Finite-Time Intra-Layer and Inter-Layer Quasi-Synchronization of Two-Layer Multi-Weighted Networks
The article pays attention to a two-layer multi-weighted network, and studies finite-time (FT) intra-/inter-layer quasi-synchronization of two-layer multi-weighted networks. Firstly, FT stability and quasi-stability theorems of dynamical system are discussed, and the results show that the maximum co...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2021-04, Vol.68 (4), p.1589-1598 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1598 |
---|---|
container_issue | 4 |
container_start_page | 1589 |
container_title | IEEE transactions on circuits and systems. I, Regular papers |
container_volume | 68 |
creator | Xu, Yuhua Wu, Xiaoqun Mao, Bing Lu, Jinhu Xie, Chengrong |
description | The article pays attention to a two-layer multi-weighted network, and studies finite-time (FT) intra-/inter-layer quasi-synchronization of two-layer multi-weighted networks. Firstly, FT stability and quasi-stability theorems of dynamical system are discussed, and the results show that the maximum convergence time of FT quasi-stability is smaller than that of FT stability for the dynamic system. Secondly, novel sufficient criteria are gained for FT intra-/inter-layer quasi-synchronization of two-layer multi-weighted networks. Thirdly, the relationship among multiple weights number, the topological structure, inner coupling modes, coupling strengthes and across layers are established. In particular, the results show that the smaller multiple weights number do not necessarily lead to faster quasi-synchronization, and the multiple weights number may have a positive feedback effect on FT intra-/inter-layer quasi-synchronization. When the multiple weights number is greater than a certain value, FT intra-layer quasi-synchronization and FT inter-layer quasi-synchronization of networks can be realized simultaneously, and the conditions of taking the minimum convergence time are also given. Finally, numerical examples verify the effectiveness of the proposed method. |
doi_str_mv | 10.1109/TCSI.2021.3050988 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2498876546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9336320</ieee_id><sourcerecordid>2498876546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-cec8f4d0027a2ef6523ea9343ee7e8236089109c38f8a9ce5c7de28035c445b3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhosoOKc_QLwpeJ2Zj6ZNLmU4HUxFVvAyZOmpy9yamaSM-ettWfHqnBfe93w8SXJL8IQQLB_K6XI-oZiSCcMcSyHOkhHhXCAscH7e95lEglFxmVyFsMGYSszIKFnNbGMjoNLuIJ030Wu00EfwqW6qXoMf9Eerg0XLY2PW3jX2V0frmtTVaXlwg-W13UaLPsF-rSNU6RvEg_Pf4Tq5qPU2wM1Qx0k5eyqnL2jx_jyfPi6QoZJFZMCIOqu6ywpNoc45ZaAlyxhAAYKyHAvZfWqYqIWWBrgpKqACM26yjK_YOLk_jd1799NCiGrjWt90GxXNOiBFzrO8c5GTy3gXgoda7b3daX9UBKuepOpJqp6kGkh2mbtTxgLAv18yljOK2R9gt2-D</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2498876546</pqid></control><display><type>article</type><title>Finite-Time Intra-Layer and Inter-Layer Quasi-Synchronization of Two-Layer Multi-Weighted Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Xu, Yuhua ; Wu, Xiaoqun ; Mao, Bing ; Lu, Jinhu ; Xie, Chengrong</creator><creatorcontrib>Xu, Yuhua ; Wu, Xiaoqun ; Mao, Bing ; Lu, Jinhu ; Xie, Chengrong</creatorcontrib><description>The article pays attention to a two-layer multi-weighted network, and studies finite-time (FT) intra-/inter-layer quasi-synchronization of two-layer multi-weighted networks. Firstly, FT stability and quasi-stability theorems of dynamical system are discussed, and the results show that the maximum convergence time of FT quasi-stability is smaller than that of FT stability for the dynamic system. Secondly, novel sufficient criteria are gained for FT intra-/inter-layer quasi-synchronization of two-layer multi-weighted networks. Thirdly, the relationship among multiple weights number, the topological structure, inner coupling modes, coupling strengthes and across layers are established. In particular, the results show that the smaller multiple weights number do not necessarily lead to faster quasi-synchronization, and the multiple weights number may have a positive feedback effect on FT intra-/inter-layer quasi-synchronization. When the multiple weights number is greater than a certain value, FT intra-layer quasi-synchronization and FT inter-layer quasi-synchronization of networks can be realized simultaneously, and the conditions of taking the minimum convergence time are also given. Finally, numerical examples verify the effectiveness of the proposed method.</description><identifier>ISSN: 1549-8328</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2021.3050988</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Convergence ; Coupling ; Couplings ; Dynamic stability ; Dynamical systems ; Eigenvalues and eigenfunctions ; Finite-time control ; Inter-layer quasi-synchronization ; Intra-layer quasi-synchronization ; Multi-weighted network ; Multiplexing ; Networks ; Positive feedback ; Stability criteria ; Stochastic processes ; Synchronism ; Synchronization ; Time synchronization ; Urban areas</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2021-04, Vol.68 (4), p.1589-1598</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-cec8f4d0027a2ef6523ea9343ee7e8236089109c38f8a9ce5c7de28035c445b3</citedby><cites>FETCH-LOGICAL-c293t-cec8f4d0027a2ef6523ea9343ee7e8236089109c38f8a9ce5c7de28035c445b3</cites><orcidid>0000-0003-0275-8387 ; 0000-0001-5065-6460 ; 0000-0001-9285-3008</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9336320$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9336320$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xu, Yuhua</creatorcontrib><creatorcontrib>Wu, Xiaoqun</creatorcontrib><creatorcontrib>Mao, Bing</creatorcontrib><creatorcontrib>Lu, Jinhu</creatorcontrib><creatorcontrib>Xie, Chengrong</creatorcontrib><title>Finite-Time Intra-Layer and Inter-Layer Quasi-Synchronization of Two-Layer Multi-Weighted Networks</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><description>The article pays attention to a two-layer multi-weighted network, and studies finite-time (FT) intra-/inter-layer quasi-synchronization of two-layer multi-weighted networks. Firstly, FT stability and quasi-stability theorems of dynamical system are discussed, and the results show that the maximum convergence time of FT quasi-stability is smaller than that of FT stability for the dynamic system. Secondly, novel sufficient criteria are gained for FT intra-/inter-layer quasi-synchronization of two-layer multi-weighted networks. Thirdly, the relationship among multiple weights number, the topological structure, inner coupling modes, coupling strengthes and across layers are established. In particular, the results show that the smaller multiple weights number do not necessarily lead to faster quasi-synchronization, and the multiple weights number may have a positive feedback effect on FT intra-/inter-layer quasi-synchronization. When the multiple weights number is greater than a certain value, FT intra-layer quasi-synchronization and FT inter-layer quasi-synchronization of networks can be realized simultaneously, and the conditions of taking the minimum convergence time are also given. Finally, numerical examples verify the effectiveness of the proposed method.</description><subject>Convergence</subject><subject>Coupling</subject><subject>Couplings</subject><subject>Dynamic stability</subject><subject>Dynamical systems</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Finite-time control</subject><subject>Inter-layer quasi-synchronization</subject><subject>Intra-layer quasi-synchronization</subject><subject>Multi-weighted network</subject><subject>Multiplexing</subject><subject>Networks</subject><subject>Positive feedback</subject><subject>Stability criteria</subject><subject>Stochastic processes</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>Time synchronization</subject><subject>Urban areas</subject><issn>1549-8328</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhosoOKc_QLwpeJ2Zj6ZNLmU4HUxFVvAyZOmpy9yamaSM-ettWfHqnBfe93w8SXJL8IQQLB_K6XI-oZiSCcMcSyHOkhHhXCAscH7e95lEglFxmVyFsMGYSszIKFnNbGMjoNLuIJ030Wu00EfwqW6qXoMf9Eerg0XLY2PW3jX2V0frmtTVaXlwg-W13UaLPsF-rSNU6RvEg_Pf4Tq5qPU2wM1Qx0k5eyqnL2jx_jyfPi6QoZJFZMCIOqu6ywpNoc45ZaAlyxhAAYKyHAvZfWqYqIWWBrgpKqACM26yjK_YOLk_jd1799NCiGrjWt90GxXNOiBFzrO8c5GTy3gXgoda7b3daX9UBKuepOpJqp6kGkh2mbtTxgLAv18yljOK2R9gt2-D</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Xu, Yuhua</creator><creator>Wu, Xiaoqun</creator><creator>Mao, Bing</creator><creator>Lu, Jinhu</creator><creator>Xie, Chengrong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0275-8387</orcidid><orcidid>https://orcid.org/0000-0001-5065-6460</orcidid><orcidid>https://orcid.org/0000-0001-9285-3008</orcidid></search><sort><creationdate>20210401</creationdate><title>Finite-Time Intra-Layer and Inter-Layer Quasi-Synchronization of Two-Layer Multi-Weighted Networks</title><author>Xu, Yuhua ; Wu, Xiaoqun ; Mao, Bing ; Lu, Jinhu ; Xie, Chengrong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-cec8f4d0027a2ef6523ea9343ee7e8236089109c38f8a9ce5c7de28035c445b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Convergence</topic><topic>Coupling</topic><topic>Couplings</topic><topic>Dynamic stability</topic><topic>Dynamical systems</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Finite-time control</topic><topic>Inter-layer quasi-synchronization</topic><topic>Intra-layer quasi-synchronization</topic><topic>Multi-weighted network</topic><topic>Multiplexing</topic><topic>Networks</topic><topic>Positive feedback</topic><topic>Stability criteria</topic><topic>Stochastic processes</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>Time synchronization</topic><topic>Urban areas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Yuhua</creatorcontrib><creatorcontrib>Wu, Xiaoqun</creatorcontrib><creatorcontrib>Mao, Bing</creatorcontrib><creatorcontrib>Lu, Jinhu</creatorcontrib><creatorcontrib>Xie, Chengrong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Yuhua</au><au>Wu, Xiaoqun</au><au>Mao, Bing</au><au>Lu, Jinhu</au><au>Xie, Chengrong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite-Time Intra-Layer and Inter-Layer Quasi-Synchronization of Two-Layer Multi-Weighted Networks</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>68</volume><issue>4</issue><spage>1589</spage><epage>1598</epage><pages>1589-1598</pages><issn>1549-8328</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract>The article pays attention to a two-layer multi-weighted network, and studies finite-time (FT) intra-/inter-layer quasi-synchronization of two-layer multi-weighted networks. Firstly, FT stability and quasi-stability theorems of dynamical system are discussed, and the results show that the maximum convergence time of FT quasi-stability is smaller than that of FT stability for the dynamic system. Secondly, novel sufficient criteria are gained for FT intra-/inter-layer quasi-synchronization of two-layer multi-weighted networks. Thirdly, the relationship among multiple weights number, the topological structure, inner coupling modes, coupling strengthes and across layers are established. In particular, the results show that the smaller multiple weights number do not necessarily lead to faster quasi-synchronization, and the multiple weights number may have a positive feedback effect on FT intra-/inter-layer quasi-synchronization. When the multiple weights number is greater than a certain value, FT intra-layer quasi-synchronization and FT inter-layer quasi-synchronization of networks can be realized simultaneously, and the conditions of taking the minimum convergence time are also given. Finally, numerical examples verify the effectiveness of the proposed method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2021.3050988</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0275-8387</orcidid><orcidid>https://orcid.org/0000-0001-5065-6460</orcidid><orcidid>https://orcid.org/0000-0001-9285-3008</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1549-8328 |
ispartof | IEEE transactions on circuits and systems. I, Regular papers, 2021-04, Vol.68 (4), p.1589-1598 |
issn | 1549-8328 1558-0806 |
language | eng |
recordid | cdi_proquest_journals_2498876546 |
source | IEEE Electronic Library (IEL) |
subjects | Convergence Coupling Couplings Dynamic stability Dynamical systems Eigenvalues and eigenfunctions Finite-time control Inter-layer quasi-synchronization Intra-layer quasi-synchronization Multi-weighted network Multiplexing Networks Positive feedback Stability criteria Stochastic processes Synchronism Synchronization Time synchronization Urban areas |
title | Finite-Time Intra-Layer and Inter-Layer Quasi-Synchronization of Two-Layer Multi-Weighted Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A15%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite-Time%20Intra-Layer%20and%20Inter-Layer%20Quasi-Synchronization%20of%20Two-Layer%20Multi-Weighted%20Networks&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Xu,%20Yuhua&rft.date=2021-04-01&rft.volume=68&rft.issue=4&rft.spage=1589&rft.epage=1598&rft.pages=1589-1598&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2021.3050988&rft_dat=%3Cproquest_RIE%3E2498876546%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2498876546&rft_id=info:pmid/&rft_ieee_id=9336320&rfr_iscdi=true |