Sparsely Activated Networks
Previous literature on unsupervised learning focused on designing structural priors with the aim of learning meaningful features. However, this was done without considering the description length of the learned representations, which is a direct and unbiased measure of the model complexity. In this...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2021-03, Vol.32 (3), p.1304-1313 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1313 |
---|---|
container_issue | 3 |
container_start_page | 1304 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 32 |
creator | Bizopoulos, Paschalis Koutsouris, Dimitrios |
description | Previous literature on unsupervised learning focused on designing structural priors with the aim of learning meaningful features. However, this was done without considering the description length of the learned representations, which is a direct and unbiased measure of the model complexity. In this article, first, we introduce the \varphi metric that evaluates unsupervised models based on their reconstruction accuracy and the degree of compression of their internal representations. We then present and define two activation functions [Identity and rectified linear unit (ReLU)] as a base of reference and three sparse activation functions (top-k absolutes, Extrema-Pool indices, and Extrema) as candidate structures that minimize the previously defined \varphi . We last present sparsely activated networks (SANs) that consist of kernels with shared weights that, during encoding, are convolved with the input and then passed through a sparse activation function. During decoding, the same weights are convolved with the sparse activation map, and subsequently, the partial reconstructions from each weight are summed to reconstruct the input. We compare SANs using the five previously defined activation functions on a variety of data sets (Physionet, UCI-epilepsy, MNIST, and FMNIST) and show that models that are selected using \varphi have small description representation length and consist of interpretable kernels. |
doi_str_mv | 10.1109/TNNLS.2020.2984514 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2498672864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9072295</ieee_id><sourcerecordid>2393045343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-20780faa86233db3032a94f4e0411e8a020207263374135d1d7ca9fd304e103</originalsourceid><addsrcrecordid>eNpdkE9rwkAQxZfSUsX6BSoUoZdeYmdnNsnuUaT_QOxBD70ta7KB2GjsblLx23et1kPnMgPze8Obx9gthxHnoB4Xs9l0PkJAGKGSIubignWRJxghSXl5ntOPDut7v4JQCcSJUNesQ0gcUgVdNphvjfO22g_HWVN-m8bmw5ltdrX79DfsqjCVt_1T77H589Ni8hpN31_eJuNplBFgEyGkEgpjZIJE-ZKA0ChRCAuCcysNHEymmBClglOc8zzNjCpyAmE5UI89HK9uXf3VWt_odekzW1VmY-vWayQVyJgEBfT-H7qqW7cJ3jQKJZMUZSIChUcqc7X3zhZ668q1cXvNQR-y07_Z6YMtfcouiO5Op9vl2uZnyV9SARgcgdJae16r8BiqmH4ArBhuog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2498672864</pqid></control><display><type>article</type><title>Sparsely Activated Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Bizopoulos, Paschalis ; Koutsouris, Dimitrios</creator><creatorcontrib>Bizopoulos, Paschalis ; Koutsouris, Dimitrios</creatorcontrib><description><![CDATA[Previous literature on unsupervised learning focused on designing structural priors with the aim of learning meaningful features. However, this was done without considering the description length of the learned representations, which is a direct and unbiased measure of the model complexity. In this article, first, we introduce the <inline-formula> <tex-math notation="LaTeX">\varphi </tex-math></inline-formula> metric that evaluates unsupervised models based on their reconstruction accuracy and the degree of compression of their internal representations. We then present and define two activation functions [Identity and rectified linear unit (ReLU)] as a base of reference and three sparse activation functions (top-k absolutes, Extrema-Pool indices, and Extrema) as candidate structures that minimize the previously defined <inline-formula> <tex-math notation="LaTeX">\varphi </tex-math></inline-formula>. We last present sparsely activated networks (SANs) that consist of kernels with shared weights that, during encoding, are convolved with the input and then passed through a sparse activation function. During decoding, the same weights are convolved with the sparse activation map, and subsequently, the partial reconstructions from each weight are summed to reconstruct the input. We compare SANs using the five previously defined activation functions on a variety of data sets (Physionet, UCI-epilepsy, MNIST, and FMNIST) and show that models that are selected using <inline-formula> <tex-math notation="LaTeX">\varphi </tex-math></inline-formula> have small description representation length and consist of interpretable kernels.]]></description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2020.2984514</identifier><identifier>PMID: 32310790</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial neural networks ; autoencoders ; Biological neural networks ; Compression ; Computational modeling ; Data models ; Epilepsy ; Kernel ; Kernels ; Measurement ; Model accuracy ; Neurons ; Representations ; sparsity ; Unsupervised learning</subject><ispartof>IEEE transaction on neural networks and learning systems, 2021-03, Vol.32 (3), p.1304-1313</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c302t-20780faa86233db3032a94f4e0411e8a020207263374135d1d7ca9fd304e103</cites><orcidid>0000-0001-7659-2354 ; 0000-0003-1205-9918</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9072295$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9072295$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32310790$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bizopoulos, Paschalis</creatorcontrib><creatorcontrib>Koutsouris, Dimitrios</creatorcontrib><title>Sparsely Activated Networks</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description><![CDATA[Previous literature on unsupervised learning focused on designing structural priors with the aim of learning meaningful features. However, this was done without considering the description length of the learned representations, which is a direct and unbiased measure of the model complexity. In this article, first, we introduce the <inline-formula> <tex-math notation="LaTeX">\varphi </tex-math></inline-formula> metric that evaluates unsupervised models based on their reconstruction accuracy and the degree of compression of their internal representations. We then present and define two activation functions [Identity and rectified linear unit (ReLU)] as a base of reference and three sparse activation functions (top-k absolutes, Extrema-Pool indices, and Extrema) as candidate structures that minimize the previously defined <inline-formula> <tex-math notation="LaTeX">\varphi </tex-math></inline-formula>. We last present sparsely activated networks (SANs) that consist of kernels with shared weights that, during encoding, are convolved with the input and then passed through a sparse activation function. During decoding, the same weights are convolved with the sparse activation map, and subsequently, the partial reconstructions from each weight are summed to reconstruct the input. We compare SANs using the five previously defined activation functions on a variety of data sets (Physionet, UCI-epilepsy, MNIST, and FMNIST) and show that models that are selected using <inline-formula> <tex-math notation="LaTeX">\varphi </tex-math></inline-formula> have small description representation length and consist of interpretable kernels.]]></description><subject>Artificial neural networks</subject><subject>autoencoders</subject><subject>Biological neural networks</subject><subject>Compression</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>Epilepsy</subject><subject>Kernel</subject><subject>Kernels</subject><subject>Measurement</subject><subject>Model accuracy</subject><subject>Neurons</subject><subject>Representations</subject><subject>sparsity</subject><subject>Unsupervised learning</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE9rwkAQxZfSUsX6BSoUoZdeYmdnNsnuUaT_QOxBD70ta7KB2GjsblLx23et1kPnMgPze8Obx9gthxHnoB4Xs9l0PkJAGKGSIubignWRJxghSXl5ntOPDut7v4JQCcSJUNesQ0gcUgVdNphvjfO22g_HWVN-m8bmw5ltdrX79DfsqjCVt_1T77H589Ni8hpN31_eJuNplBFgEyGkEgpjZIJE-ZKA0ChRCAuCcysNHEymmBClglOc8zzNjCpyAmE5UI89HK9uXf3VWt_odekzW1VmY-vWayQVyJgEBfT-H7qqW7cJ3jQKJZMUZSIChUcqc7X3zhZ668q1cXvNQR-y07_Z6YMtfcouiO5Op9vl2uZnyV9SARgcgdJae16r8BiqmH4ArBhuog</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Bizopoulos, Paschalis</creator><creator>Koutsouris, Dimitrios</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7659-2354</orcidid><orcidid>https://orcid.org/0000-0003-1205-9918</orcidid></search><sort><creationdate>20210301</creationdate><title>Sparsely Activated Networks</title><author>Bizopoulos, Paschalis ; Koutsouris, Dimitrios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-20780faa86233db3032a94f4e0411e8a020207263374135d1d7ca9fd304e103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>autoencoders</topic><topic>Biological neural networks</topic><topic>Compression</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>Epilepsy</topic><topic>Kernel</topic><topic>Kernels</topic><topic>Measurement</topic><topic>Model accuracy</topic><topic>Neurons</topic><topic>Representations</topic><topic>sparsity</topic><topic>Unsupervised learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Bizopoulos, Paschalis</creatorcontrib><creatorcontrib>Koutsouris, Dimitrios</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bizopoulos, Paschalis</au><au>Koutsouris, Dimitrios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sparsely Activated Networks</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>32</volume><issue>3</issue><spage>1304</spage><epage>1313</epage><pages>1304-1313</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract><![CDATA[Previous literature on unsupervised learning focused on designing structural priors with the aim of learning meaningful features. However, this was done without considering the description length of the learned representations, which is a direct and unbiased measure of the model complexity. In this article, first, we introduce the <inline-formula> <tex-math notation="LaTeX">\varphi </tex-math></inline-formula> metric that evaluates unsupervised models based on their reconstruction accuracy and the degree of compression of their internal representations. We then present and define two activation functions [Identity and rectified linear unit (ReLU)] as a base of reference and three sparse activation functions (top-k absolutes, Extrema-Pool indices, and Extrema) as candidate structures that minimize the previously defined <inline-formula> <tex-math notation="LaTeX">\varphi </tex-math></inline-formula>. We last present sparsely activated networks (SANs) that consist of kernels with shared weights that, during encoding, are convolved with the input and then passed through a sparse activation function. During decoding, the same weights are convolved with the sparse activation map, and subsequently, the partial reconstructions from each weight are summed to reconstruct the input. We compare SANs using the five previously defined activation functions on a variety of data sets (Physionet, UCI-epilepsy, MNIST, and FMNIST) and show that models that are selected using <inline-formula> <tex-math notation="LaTeX">\varphi </tex-math></inline-formula> have small description representation length and consist of interpretable kernels.]]></abstract><cop>United States</cop><pub>IEEE</pub><pmid>32310790</pmid><doi>10.1109/TNNLS.2020.2984514</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7659-2354</orcidid><orcidid>https://orcid.org/0000-0003-1205-9918</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2021-03, Vol.32 (3), p.1304-1313 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_proquest_journals_2498672864 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks autoencoders Biological neural networks Compression Computational modeling Data models Epilepsy Kernel Kernels Measurement Model accuracy Neurons Representations sparsity Unsupervised learning |
title | Sparsely Activated Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T00%3A48%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sparsely%20Activated%20Networks&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Bizopoulos,%20Paschalis&rft.date=2021-03-01&rft.volume=32&rft.issue=3&rft.spage=1304&rft.epage=1313&rft.pages=1304-1313&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2020.2984514&rft_dat=%3Cproquest_RIE%3E2393045343%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2498672864&rft_id=info:pmid/32310790&rft_ieee_id=9072295&rfr_iscdi=true |