A Variable Curvature Model for Multi-Backbone Continuum Robots to Account for Inter-Segment Coupling and External Disturbance
Multi-backbone continuum robots demonstrated potentials for dexterous manipulation with proper payload capability in minimally invasive surgeries. Most prior works assume constant curvature shapes of the continuum segments in the modeling and control of the multi-backbone continuum robots. The actua...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2021-04, Vol.6 (2), p.1590-1597 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1597 |
---|---|
container_issue | 2 |
container_start_page | 1590 |
container_title | IEEE robotics and automation letters |
container_volume | 6 |
creator | Chen, Yuyang Wu, Baibo Jin, Jiabin Xu, Kai |
description | Multi-backbone continuum robots demonstrated potentials for dexterous manipulation with proper payload capability in minimally invasive surgeries. Most prior works assume constant curvature shapes of the continuum segments in the modeling and control of the multi-backbone continuum robots. The actuation coupling effects between adjacent continuum segments and the segments' variable curvature shapes under environmental interactions have not been fully addressed by a static-kinematic model specifically for multi-backbone continuum robots. This letter hence proposes a variable curvature model for multi-backbone continuum robots with relatively low bending curvature based on the Cosserat rod theory. The model focuses on the major factors that affect the robot's shape: the length-prescribed push-pull actuation, the elastic elongation of the backbone rods, and the external loads. With five assumptions made to simplify the constraints in the multi-backbone continuum robot, a compact statics-kinematics formulation is derived with computational performance acceptable for real-time control. Experiments were conducted on a continuum robotic system to quantify the modeling accuracy and computational efficiency. The proposed model was shown to have substantially improved accuracy over the constant curvature model. The average computational time for solving the inverse kinematics was 0.7ms on a 2.6 GHz Intel i7-5600U platform, which is promising for real-time control. |
doi_str_mv | 10.1109/LRA.2021.3058925 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2498672367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9353197</ieee_id><sourcerecordid>2498672367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-70c9882d668e48c79a46c4b84aa4bf41ba3501b78fadd6d5294ec1c324534bc93</originalsourceid><addsrcrecordid>eNpNkEtLw0AQgIMoWGrvgpcFz6n7SjZ7jLFqoUWoj2vY3WxKarpb9yF68L-bWhFPM8x88-BLknMEpwhBfrVYlVMMMZoSmBUcZ0fJCBPGUsLy_PhffppMvN9ACFGGGeHZKPkqwYtwnZC9BlV07yJEp8HSNroHrXVgGfvQpddCvUprBsSa0JkYt2BlpQ0eBAtKpWw04Qefm6Bd-qjXWz1UKht3fWfWQJgGzD6GlhE9uOn8cEQKo_RZctKK3uvJbxwnz7ezp-o-XTzczatykSrMUUgZVLwocJPnhaaFYlzQXFFZUCGobCmSgmQQSVa0omnyJsOcaoUUwTQjVCpOxsnlYe_O2beofag3Nu6f8TWmvMgZJjkbKHiglLPeO93WO9dthfusEaz3nuvBc733XP96HkYuDiOd1voP5yQjiDPyDR_3ecs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2498672367</pqid></control><display><type>article</type><title>A Variable Curvature Model for Multi-Backbone Continuum Robots to Account for Inter-Segment Coupling and External Disturbance</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Yuyang ; Wu, Baibo ; Jin, Jiabin ; Xu, Kai</creator><creatorcontrib>Chen, Yuyang ; Wu, Baibo ; Jin, Jiabin ; Xu, Kai</creatorcontrib><description>Multi-backbone continuum robots demonstrated potentials for dexterous manipulation with proper payload capability in minimally invasive surgeries. Most prior works assume constant curvature shapes of the continuum segments in the modeling and control of the multi-backbone continuum robots. The actuation coupling effects between adjacent continuum segments and the segments' variable curvature shapes under environmental interactions have not been fully addressed by a static-kinematic model specifically for multi-backbone continuum robots. This letter hence proposes a variable curvature model for multi-backbone continuum robots with relatively low bending curvature based on the Cosserat rod theory. The model focuses on the major factors that affect the robot's shape: the length-prescribed push-pull actuation, the elastic elongation of the backbone rods, and the external loads. With five assumptions made to simplify the constraints in the multi-backbone continuum robot, a compact statics-kinematics formulation is derived with computational performance acceptable for real-time control. Experiments were conducted on a continuum robotic system to quantify the modeling accuracy and computational efficiency. The proposed model was shown to have substantially improved accuracy over the constant curvature model. The average computational time for solving the inverse kinematics was 0.7ms on a 2.6 GHz Intel i7-5600U platform, which is promising for real-time control.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2021.3058925</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Actuation ; Backbone ; compliant joints and mechanisms ; Computational efficiency ; Computational modeling ; Computing time ; continuum robots ; Coupling ; Curvature ; Elongation ; Force ; Inverse kinematics ; Kinematics ; Mathematical analysis ; Mathematical model ; Model accuracy ; Real time ; Robots ; Segments ; Shape ; Surgery ; Surgical robotics: Laparoscopy</subject><ispartof>IEEE robotics and automation letters, 2021-04, Vol.6 (2), p.1590-1597</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-70c9882d668e48c79a46c4b84aa4bf41ba3501b78fadd6d5294ec1c324534bc93</citedby><cites>FETCH-LOGICAL-c291t-70c9882d668e48c79a46c4b84aa4bf41ba3501b78fadd6d5294ec1c324534bc93</cites><orcidid>0000-0003-1690-3370 ; 0000-0002-5606-050X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9353197$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9353197$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Yuyang</creatorcontrib><creatorcontrib>Wu, Baibo</creatorcontrib><creatorcontrib>Jin, Jiabin</creatorcontrib><creatorcontrib>Xu, Kai</creatorcontrib><title>A Variable Curvature Model for Multi-Backbone Continuum Robots to Account for Inter-Segment Coupling and External Disturbance</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Multi-backbone continuum robots demonstrated potentials for dexterous manipulation with proper payload capability in minimally invasive surgeries. Most prior works assume constant curvature shapes of the continuum segments in the modeling and control of the multi-backbone continuum robots. The actuation coupling effects between adjacent continuum segments and the segments' variable curvature shapes under environmental interactions have not been fully addressed by a static-kinematic model specifically for multi-backbone continuum robots. This letter hence proposes a variable curvature model for multi-backbone continuum robots with relatively low bending curvature based on the Cosserat rod theory. The model focuses on the major factors that affect the robot's shape: the length-prescribed push-pull actuation, the elastic elongation of the backbone rods, and the external loads. With five assumptions made to simplify the constraints in the multi-backbone continuum robot, a compact statics-kinematics formulation is derived with computational performance acceptable for real-time control. Experiments were conducted on a continuum robotic system to quantify the modeling accuracy and computational efficiency. The proposed model was shown to have substantially improved accuracy over the constant curvature model. The average computational time for solving the inverse kinematics was 0.7ms on a 2.6 GHz Intel i7-5600U platform, which is promising for real-time control.</description><subject>Actuation</subject><subject>Backbone</subject><subject>compliant joints and mechanisms</subject><subject>Computational efficiency</subject><subject>Computational modeling</subject><subject>Computing time</subject><subject>continuum robots</subject><subject>Coupling</subject><subject>Curvature</subject><subject>Elongation</subject><subject>Force</subject><subject>Inverse kinematics</subject><subject>Kinematics</subject><subject>Mathematical analysis</subject><subject>Mathematical model</subject><subject>Model accuracy</subject><subject>Real time</subject><subject>Robots</subject><subject>Segments</subject><subject>Shape</subject><subject>Surgery</subject><subject>Surgical robotics: Laparoscopy</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtLw0AQgIMoWGrvgpcFz6n7SjZ7jLFqoUWoj2vY3WxKarpb9yF68L-bWhFPM8x88-BLknMEpwhBfrVYlVMMMZoSmBUcZ0fJCBPGUsLy_PhffppMvN9ACFGGGeHZKPkqwYtwnZC9BlV07yJEp8HSNroHrXVgGfvQpddCvUprBsSa0JkYt2BlpQ0eBAtKpWw04Qefm6Bd-qjXWz1UKht3fWfWQJgGzD6GlhE9uOn8cEQKo_RZctKK3uvJbxwnz7ezp-o-XTzczatykSrMUUgZVLwocJPnhaaFYlzQXFFZUCGobCmSgmQQSVa0omnyJsOcaoUUwTQjVCpOxsnlYe_O2beofag3Nu6f8TWmvMgZJjkbKHiglLPeO93WO9dthfusEaz3nuvBc733XP96HkYuDiOd1voP5yQjiDPyDR_3ecs</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Chen, Yuyang</creator><creator>Wu, Baibo</creator><creator>Jin, Jiabin</creator><creator>Xu, Kai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1690-3370</orcidid><orcidid>https://orcid.org/0000-0002-5606-050X</orcidid></search><sort><creationdate>20210401</creationdate><title>A Variable Curvature Model for Multi-Backbone Continuum Robots to Account for Inter-Segment Coupling and External Disturbance</title><author>Chen, Yuyang ; Wu, Baibo ; Jin, Jiabin ; Xu, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-70c9882d668e48c79a46c4b84aa4bf41ba3501b78fadd6d5294ec1c324534bc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Actuation</topic><topic>Backbone</topic><topic>compliant joints and mechanisms</topic><topic>Computational efficiency</topic><topic>Computational modeling</topic><topic>Computing time</topic><topic>continuum robots</topic><topic>Coupling</topic><topic>Curvature</topic><topic>Elongation</topic><topic>Force</topic><topic>Inverse kinematics</topic><topic>Kinematics</topic><topic>Mathematical analysis</topic><topic>Mathematical model</topic><topic>Model accuracy</topic><topic>Real time</topic><topic>Robots</topic><topic>Segments</topic><topic>Shape</topic><topic>Surgery</topic><topic>Surgical robotics: Laparoscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yuyang</creatorcontrib><creatorcontrib>Wu, Baibo</creatorcontrib><creatorcontrib>Jin, Jiabin</creatorcontrib><creatorcontrib>Xu, Kai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Yuyang</au><au>Wu, Baibo</au><au>Jin, Jiabin</au><au>Xu, Kai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Variable Curvature Model for Multi-Backbone Continuum Robots to Account for Inter-Segment Coupling and External Disturbance</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>6</volume><issue>2</issue><spage>1590</spage><epage>1597</epage><pages>1590-1597</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Multi-backbone continuum robots demonstrated potentials for dexterous manipulation with proper payload capability in minimally invasive surgeries. Most prior works assume constant curvature shapes of the continuum segments in the modeling and control of the multi-backbone continuum robots. The actuation coupling effects between adjacent continuum segments and the segments' variable curvature shapes under environmental interactions have not been fully addressed by a static-kinematic model specifically for multi-backbone continuum robots. This letter hence proposes a variable curvature model for multi-backbone continuum robots with relatively low bending curvature based on the Cosserat rod theory. The model focuses on the major factors that affect the robot's shape: the length-prescribed push-pull actuation, the elastic elongation of the backbone rods, and the external loads. With five assumptions made to simplify the constraints in the multi-backbone continuum robot, a compact statics-kinematics formulation is derived with computational performance acceptable for real-time control. Experiments were conducted on a continuum robotic system to quantify the modeling accuracy and computational efficiency. The proposed model was shown to have substantially improved accuracy over the constant curvature model. The average computational time for solving the inverse kinematics was 0.7ms on a 2.6 GHz Intel i7-5600U platform, which is promising for real-time control.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2021.3058925</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1690-3370</orcidid><orcidid>https://orcid.org/0000-0002-5606-050X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2021-04, Vol.6 (2), p.1590-1597 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_proquest_journals_2498672367 |
source | IEEE Electronic Library (IEL) |
subjects | Actuation Backbone compliant joints and mechanisms Computational efficiency Computational modeling Computing time continuum robots Coupling Curvature Elongation Force Inverse kinematics Kinematics Mathematical analysis Mathematical model Model accuracy Real time Robots Segments Shape Surgery Surgical robotics: Laparoscopy |
title | A Variable Curvature Model for Multi-Backbone Continuum Robots to Account for Inter-Segment Coupling and External Disturbance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T19%3A37%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Variable%20Curvature%20Model%20for%20Multi-Backbone%20Continuum%20Robots%20to%20Account%20for%20Inter-Segment%20Coupling%20and%20External%20Disturbance&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Chen,%20Yuyang&rft.date=2021-04-01&rft.volume=6&rft.issue=2&rft.spage=1590&rft.epage=1597&rft.pages=1590-1597&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2021.3058925&rft_dat=%3Cproquest_RIE%3E2498672367%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2498672367&rft_id=info:pmid/&rft_ieee_id=9353197&rfr_iscdi=true |