A Variable Curvature Model for Multi-Backbone Continuum Robots to Account for Inter-Segment Coupling and External Disturbance

Multi-backbone continuum robots demonstrated potentials for dexterous manipulation with proper payload capability in minimally invasive surgeries. Most prior works assume constant curvature shapes of the continuum segments in the modeling and control of the multi-backbone continuum robots. The actua...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2021-04, Vol.6 (2), p.1590-1597
Hauptverfasser: Chen, Yuyang, Wu, Baibo, Jin, Jiabin, Xu, Kai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1597
container_issue 2
container_start_page 1590
container_title IEEE robotics and automation letters
container_volume 6
creator Chen, Yuyang
Wu, Baibo
Jin, Jiabin
Xu, Kai
description Multi-backbone continuum robots demonstrated potentials for dexterous manipulation with proper payload capability in minimally invasive surgeries. Most prior works assume constant curvature shapes of the continuum segments in the modeling and control of the multi-backbone continuum robots. The actuation coupling effects between adjacent continuum segments and the segments' variable curvature shapes under environmental interactions have not been fully addressed by a static-kinematic model specifically for multi-backbone continuum robots. This letter hence proposes a variable curvature model for multi-backbone continuum robots with relatively low bending curvature based on the Cosserat rod theory. The model focuses on the major factors that affect the robot's shape: the length-prescribed push-pull actuation, the elastic elongation of the backbone rods, and the external loads. With five assumptions made to simplify the constraints in the multi-backbone continuum robot, a compact statics-kinematics formulation is derived with computational performance acceptable for real-time control. Experiments were conducted on a continuum robotic system to quantify the modeling accuracy and computational efficiency. The proposed model was shown to have substantially improved accuracy over the constant curvature model. The average computational time for solving the inverse kinematics was 0.7ms on a 2.6 GHz Intel i7-5600U platform, which is promising for real-time control.
doi_str_mv 10.1109/LRA.2021.3058925
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2498672367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9353197</ieee_id><sourcerecordid>2498672367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-70c9882d668e48c79a46c4b84aa4bf41ba3501b78fadd6d5294ec1c324534bc93</originalsourceid><addsrcrecordid>eNpNkEtLw0AQgIMoWGrvgpcFz6n7SjZ7jLFqoUWoj2vY3WxKarpb9yF68L-bWhFPM8x88-BLknMEpwhBfrVYlVMMMZoSmBUcZ0fJCBPGUsLy_PhffppMvN9ACFGGGeHZKPkqwYtwnZC9BlV07yJEp8HSNroHrXVgGfvQpddCvUprBsSa0JkYt2BlpQ0eBAtKpWw04Qefm6Bd-qjXWz1UKht3fWfWQJgGzD6GlhE9uOn8cEQKo_RZctKK3uvJbxwnz7ezp-o-XTzczatykSrMUUgZVLwocJPnhaaFYlzQXFFZUCGobCmSgmQQSVa0omnyJsOcaoUUwTQjVCpOxsnlYe_O2beofag3Nu6f8TWmvMgZJjkbKHiglLPeO93WO9dthfusEaz3nuvBc733XP96HkYuDiOd1voP5yQjiDPyDR_3ecs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2498672367</pqid></control><display><type>article</type><title>A Variable Curvature Model for Multi-Backbone Continuum Robots to Account for Inter-Segment Coupling and External Disturbance</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Yuyang ; Wu, Baibo ; Jin, Jiabin ; Xu, Kai</creator><creatorcontrib>Chen, Yuyang ; Wu, Baibo ; Jin, Jiabin ; Xu, Kai</creatorcontrib><description>Multi-backbone continuum robots demonstrated potentials for dexterous manipulation with proper payload capability in minimally invasive surgeries. Most prior works assume constant curvature shapes of the continuum segments in the modeling and control of the multi-backbone continuum robots. The actuation coupling effects between adjacent continuum segments and the segments' variable curvature shapes under environmental interactions have not been fully addressed by a static-kinematic model specifically for multi-backbone continuum robots. This letter hence proposes a variable curvature model for multi-backbone continuum robots with relatively low bending curvature based on the Cosserat rod theory. The model focuses on the major factors that affect the robot's shape: the length-prescribed push-pull actuation, the elastic elongation of the backbone rods, and the external loads. With five assumptions made to simplify the constraints in the multi-backbone continuum robot, a compact statics-kinematics formulation is derived with computational performance acceptable for real-time control. Experiments were conducted on a continuum robotic system to quantify the modeling accuracy and computational efficiency. The proposed model was shown to have substantially improved accuracy over the constant curvature model. The average computational time for solving the inverse kinematics was 0.7ms on a 2.6 GHz Intel i7-5600U platform, which is promising for real-time control.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2021.3058925</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Actuation ; Backbone ; compliant joints and mechanisms ; Computational efficiency ; Computational modeling ; Computing time ; continuum robots ; Coupling ; Curvature ; Elongation ; Force ; Inverse kinematics ; Kinematics ; Mathematical analysis ; Mathematical model ; Model accuracy ; Real time ; Robots ; Segments ; Shape ; Surgery ; Surgical robotics: Laparoscopy</subject><ispartof>IEEE robotics and automation letters, 2021-04, Vol.6 (2), p.1590-1597</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-70c9882d668e48c79a46c4b84aa4bf41ba3501b78fadd6d5294ec1c324534bc93</citedby><cites>FETCH-LOGICAL-c291t-70c9882d668e48c79a46c4b84aa4bf41ba3501b78fadd6d5294ec1c324534bc93</cites><orcidid>0000-0003-1690-3370 ; 0000-0002-5606-050X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9353197$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9353197$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Yuyang</creatorcontrib><creatorcontrib>Wu, Baibo</creatorcontrib><creatorcontrib>Jin, Jiabin</creatorcontrib><creatorcontrib>Xu, Kai</creatorcontrib><title>A Variable Curvature Model for Multi-Backbone Continuum Robots to Account for Inter-Segment Coupling and External Disturbance</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Multi-backbone continuum robots demonstrated potentials for dexterous manipulation with proper payload capability in minimally invasive surgeries. Most prior works assume constant curvature shapes of the continuum segments in the modeling and control of the multi-backbone continuum robots. The actuation coupling effects between adjacent continuum segments and the segments' variable curvature shapes under environmental interactions have not been fully addressed by a static-kinematic model specifically for multi-backbone continuum robots. This letter hence proposes a variable curvature model for multi-backbone continuum robots with relatively low bending curvature based on the Cosserat rod theory. The model focuses on the major factors that affect the robot's shape: the length-prescribed push-pull actuation, the elastic elongation of the backbone rods, and the external loads. With five assumptions made to simplify the constraints in the multi-backbone continuum robot, a compact statics-kinematics formulation is derived with computational performance acceptable for real-time control. Experiments were conducted on a continuum robotic system to quantify the modeling accuracy and computational efficiency. The proposed model was shown to have substantially improved accuracy over the constant curvature model. The average computational time for solving the inverse kinematics was 0.7ms on a 2.6 GHz Intel i7-5600U platform, which is promising for real-time control.</description><subject>Actuation</subject><subject>Backbone</subject><subject>compliant joints and mechanisms</subject><subject>Computational efficiency</subject><subject>Computational modeling</subject><subject>Computing time</subject><subject>continuum robots</subject><subject>Coupling</subject><subject>Curvature</subject><subject>Elongation</subject><subject>Force</subject><subject>Inverse kinematics</subject><subject>Kinematics</subject><subject>Mathematical analysis</subject><subject>Mathematical model</subject><subject>Model accuracy</subject><subject>Real time</subject><subject>Robots</subject><subject>Segments</subject><subject>Shape</subject><subject>Surgery</subject><subject>Surgical robotics: Laparoscopy</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtLw0AQgIMoWGrvgpcFz6n7SjZ7jLFqoUWoj2vY3WxKarpb9yF68L-bWhFPM8x88-BLknMEpwhBfrVYlVMMMZoSmBUcZ0fJCBPGUsLy_PhffppMvN9ACFGGGeHZKPkqwYtwnZC9BlV07yJEp8HSNroHrXVgGfvQpddCvUprBsSa0JkYt2BlpQ0eBAtKpWw04Qefm6Bd-qjXWz1UKht3fWfWQJgGzD6GlhE9uOn8cEQKo_RZctKK3uvJbxwnz7ezp-o-XTzczatykSrMUUgZVLwocJPnhaaFYlzQXFFZUCGobCmSgmQQSVa0omnyJsOcaoUUwTQjVCpOxsnlYe_O2beofag3Nu6f8TWmvMgZJjkbKHiglLPeO93WO9dthfusEaz3nuvBc733XP96HkYuDiOd1voP5yQjiDPyDR_3ecs</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Chen, Yuyang</creator><creator>Wu, Baibo</creator><creator>Jin, Jiabin</creator><creator>Xu, Kai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1690-3370</orcidid><orcidid>https://orcid.org/0000-0002-5606-050X</orcidid></search><sort><creationdate>20210401</creationdate><title>A Variable Curvature Model for Multi-Backbone Continuum Robots to Account for Inter-Segment Coupling and External Disturbance</title><author>Chen, Yuyang ; Wu, Baibo ; Jin, Jiabin ; Xu, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-70c9882d668e48c79a46c4b84aa4bf41ba3501b78fadd6d5294ec1c324534bc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Actuation</topic><topic>Backbone</topic><topic>compliant joints and mechanisms</topic><topic>Computational efficiency</topic><topic>Computational modeling</topic><topic>Computing time</topic><topic>continuum robots</topic><topic>Coupling</topic><topic>Curvature</topic><topic>Elongation</topic><topic>Force</topic><topic>Inverse kinematics</topic><topic>Kinematics</topic><topic>Mathematical analysis</topic><topic>Mathematical model</topic><topic>Model accuracy</topic><topic>Real time</topic><topic>Robots</topic><topic>Segments</topic><topic>Shape</topic><topic>Surgery</topic><topic>Surgical robotics: Laparoscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yuyang</creatorcontrib><creatorcontrib>Wu, Baibo</creatorcontrib><creatorcontrib>Jin, Jiabin</creatorcontrib><creatorcontrib>Xu, Kai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Yuyang</au><au>Wu, Baibo</au><au>Jin, Jiabin</au><au>Xu, Kai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Variable Curvature Model for Multi-Backbone Continuum Robots to Account for Inter-Segment Coupling and External Disturbance</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>6</volume><issue>2</issue><spage>1590</spage><epage>1597</epage><pages>1590-1597</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Multi-backbone continuum robots demonstrated potentials for dexterous manipulation with proper payload capability in minimally invasive surgeries. Most prior works assume constant curvature shapes of the continuum segments in the modeling and control of the multi-backbone continuum robots. The actuation coupling effects between adjacent continuum segments and the segments' variable curvature shapes under environmental interactions have not been fully addressed by a static-kinematic model specifically for multi-backbone continuum robots. This letter hence proposes a variable curvature model for multi-backbone continuum robots with relatively low bending curvature based on the Cosserat rod theory. The model focuses on the major factors that affect the robot's shape: the length-prescribed push-pull actuation, the elastic elongation of the backbone rods, and the external loads. With five assumptions made to simplify the constraints in the multi-backbone continuum robot, a compact statics-kinematics formulation is derived with computational performance acceptable for real-time control. Experiments were conducted on a continuum robotic system to quantify the modeling accuracy and computational efficiency. The proposed model was shown to have substantially improved accuracy over the constant curvature model. The average computational time for solving the inverse kinematics was 0.7ms on a 2.6 GHz Intel i7-5600U platform, which is promising for real-time control.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2021.3058925</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1690-3370</orcidid><orcidid>https://orcid.org/0000-0002-5606-050X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2021-04, Vol.6 (2), p.1590-1597
issn 2377-3766
2377-3766
language eng
recordid cdi_proquest_journals_2498672367
source IEEE Electronic Library (IEL)
subjects Actuation
Backbone
compliant joints and mechanisms
Computational efficiency
Computational modeling
Computing time
continuum robots
Coupling
Curvature
Elongation
Force
Inverse kinematics
Kinematics
Mathematical analysis
Mathematical model
Model accuracy
Real time
Robots
Segments
Shape
Surgery
Surgical robotics: Laparoscopy
title A Variable Curvature Model for Multi-Backbone Continuum Robots to Account for Inter-Segment Coupling and External Disturbance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T19%3A37%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Variable%20Curvature%20Model%20for%20Multi-Backbone%20Continuum%20Robots%20to%20Account%20for%20Inter-Segment%20Coupling%20and%20External%20Disturbance&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Chen,%20Yuyang&rft.date=2021-04-01&rft.volume=6&rft.issue=2&rft.spage=1590&rft.epage=1597&rft.pages=1590-1597&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2021.3058925&rft_dat=%3Cproquest_RIE%3E2498672367%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2498672367&rft_id=info:pmid/&rft_ieee_id=9353197&rfr_iscdi=true