Coarse‐grained model of the glass transition in network‐forming oxides

Properties of network‐forming oxide glasses, including both the glass transition point and fragility, are often associated with the density of covalent bonds that impose mechanical constraints on the structure. Yet, even in the simplest of alkali‐modified oxides, inconsistencies exist that have rema...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2021-05, Vol.104 (5), p.2007-2016
1. Verfasser: Sidebottom, David L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2016
container_issue 5
container_start_page 2007
container_title Journal of the American Ceramic Society
container_volume 104
creator Sidebottom, David L.
description Properties of network‐forming oxide glasses, including both the glass transition point and fragility, are often associated with the density of covalent bonds that impose mechanical constraints on the structure. Yet, even in the simplest of alkali‐modified oxides, inconsistencies exist that have remained unanswered for many decades. Here we highlight these inconsistencies and demonstrate how an alternative measure of the bond density, arrived at through coarse‐graining of certain rigid structures present in the network, could resolve these puzzles and provide a single‐parameter description of the glass transition in network‐forming materials.
doi_str_mv 10.1111/jace.17641
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2497903068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2497903068</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3011-307f6600fdaf481d8f7c26a7a393a414e059a73ef77f1d796d7b2f6d00b169423</originalsourceid><addsrcrecordid>eNp9kEFOwzAQRS0EEqWw4QSW2CGlzCSpHS-rqBSqSmxgbbmxXVzSuNipSnccgTNyElLCmtl8jfT-jPQIuUYYYTd3a1WZEXKW4wkZ4HiMSSqQnZIBAKQJL1I4JxcxrrsVRZEPyLz0KkTz_fm1Cso1RtON16am3tL21dBVrWKkbVBNdK3zDXUNbUy79-Gtq1gfNq5ZUf_htImX5MyqOpqrvxySl_vpc_mQLJ5mj-VkkVQZICYZcMsYgNXK5gXqwvIqZYqrTGQqx9zAWCieGcu5Rc0F03yZWqYBlshEnmZDctPf3Qb_vjOxlWu_C033Uqa54AIyYEVH3fZUFXyMwVi5DW6jwkEiyKMreXQlf111MPbw3tXm8A8p55Ny2nd-ACJJbSI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2497903068</pqid></control><display><type>article</type><title>Coarse‐grained model of the glass transition in network‐forming oxides</title><source>Wiley Online Library All Journals</source><creator>Sidebottom, David L.</creator><creatorcontrib>Sidebottom, David L.</creatorcontrib><description>Properties of network‐forming oxide glasses, including both the glass transition point and fragility, are often associated with the density of covalent bonds that impose mechanical constraints on the structure. Yet, even in the simplest of alkali‐modified oxides, inconsistencies exist that have remained unanswered for many decades. Here we highlight these inconsistencies and demonstrate how an alternative measure of the bond density, arrived at through coarse‐graining of certain rigid structures present in the network, could resolve these puzzles and provide a single‐parameter description of the glass transition in network‐forming materials.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.17641</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Covalent bonds ; Density ; Fragility ; Glass transition ; Granulation ; oxides ; Rigid structures ; structure ; thermodynamics ; Transition points ; viscosity</subject><ispartof>Journal of the American Ceramic Society, 2021-05, Vol.104 (5), p.2007-2016</ispartof><rights>2020 American Ceramic Society</rights><rights>2021 American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3011-307f6600fdaf481d8f7c26a7a393a414e059a73ef77f1d796d7b2f6d00b169423</citedby><cites>FETCH-LOGICAL-c3011-307f6600fdaf481d8f7c26a7a393a414e059a73ef77f1d796d7b2f6d00b169423</cites><orcidid>0000-0003-1274-6195</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.17641$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.17641$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Sidebottom, David L.</creatorcontrib><title>Coarse‐grained model of the glass transition in network‐forming oxides</title><title>Journal of the American Ceramic Society</title><description>Properties of network‐forming oxide glasses, including both the glass transition point and fragility, are often associated with the density of covalent bonds that impose mechanical constraints on the structure. Yet, even in the simplest of alkali‐modified oxides, inconsistencies exist that have remained unanswered for many decades. Here we highlight these inconsistencies and demonstrate how an alternative measure of the bond density, arrived at through coarse‐graining of certain rigid structures present in the network, could resolve these puzzles and provide a single‐parameter description of the glass transition in network‐forming materials.</description><subject>Covalent bonds</subject><subject>Density</subject><subject>Fragility</subject><subject>Glass transition</subject><subject>Granulation</subject><subject>oxides</subject><subject>Rigid structures</subject><subject>structure</subject><subject>thermodynamics</subject><subject>Transition points</subject><subject>viscosity</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEFOwzAQRS0EEqWw4QSW2CGlzCSpHS-rqBSqSmxgbbmxXVzSuNipSnccgTNyElLCmtl8jfT-jPQIuUYYYTd3a1WZEXKW4wkZ4HiMSSqQnZIBAKQJL1I4JxcxrrsVRZEPyLz0KkTz_fm1Cso1RtON16am3tL21dBVrWKkbVBNdK3zDXUNbUy79-Gtq1gfNq5ZUf_htImX5MyqOpqrvxySl_vpc_mQLJ5mj-VkkVQZICYZcMsYgNXK5gXqwvIqZYqrTGQqx9zAWCieGcu5Rc0F03yZWqYBlshEnmZDctPf3Qb_vjOxlWu_C033Uqa54AIyYEVH3fZUFXyMwVi5DW6jwkEiyKMreXQlf111MPbw3tXm8A8p55Ny2nd-ACJJbSI</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Sidebottom, David L.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-1274-6195</orcidid></search><sort><creationdate>202105</creationdate><title>Coarse‐grained model of the glass transition in network‐forming oxides</title><author>Sidebottom, David L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3011-307f6600fdaf481d8f7c26a7a393a414e059a73ef77f1d796d7b2f6d00b169423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Covalent bonds</topic><topic>Density</topic><topic>Fragility</topic><topic>Glass transition</topic><topic>Granulation</topic><topic>oxides</topic><topic>Rigid structures</topic><topic>structure</topic><topic>thermodynamics</topic><topic>Transition points</topic><topic>viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sidebottom, David L.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sidebottom, David L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coarse‐grained model of the glass transition in network‐forming oxides</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2021-05</date><risdate>2021</risdate><volume>104</volume><issue>5</issue><spage>2007</spage><epage>2016</epage><pages>2007-2016</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>Properties of network‐forming oxide glasses, including both the glass transition point and fragility, are often associated with the density of covalent bonds that impose mechanical constraints on the structure. Yet, even in the simplest of alkali‐modified oxides, inconsistencies exist that have remained unanswered for many decades. Here we highlight these inconsistencies and demonstrate how an alternative measure of the bond density, arrived at through coarse‐graining of certain rigid structures present in the network, could resolve these puzzles and provide a single‐parameter description of the glass transition in network‐forming materials.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.17641</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1274-6195</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2021-05, Vol.104 (5), p.2007-2016
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_journals_2497903068
source Wiley Online Library All Journals
subjects Covalent bonds
Density
Fragility
Glass transition
Granulation
oxides
Rigid structures
structure
thermodynamics
Transition points
viscosity
title Coarse‐grained model of the glass transition in network‐forming oxides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T10%3A48%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coarse%E2%80%90grained%20model%20of%20the%20glass%20transition%20in%20network%E2%80%90forming%20oxides&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Sidebottom,%20David%20L.&rft.date=2021-05&rft.volume=104&rft.issue=5&rft.spage=2007&rft.epage=2016&rft.pages=2007-2016&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.17641&rft_dat=%3Cproquest_cross%3E2497903068%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2497903068&rft_id=info:pmid/&rfr_iscdi=true