Late-Holocene climate changes linked to ecosystem shifts in the Northwest Wisconsin Sand Plain, USA

Records of century-scale climate variability in the Upper Midwest generally agree that moisture availability increased between 4000 and 3000 cal. yr BP (calendar years before present = 1950 CE), and that there were large, frequent droughts 1000–700 cal. yr BP followed by wetter/cooler conditions. Va...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Holocene (Sevenoaks) 2021-03, Vol.31 (3), p.409-420
Hauptverfasser: Calcote, Randy, Nevala-Plagemann, Christopher, Lynch, Elizabeth A, Hotchkiss, Sara C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Records of century-scale climate variability in the Upper Midwest generally agree that moisture availability increased between 4000 and 3000 cal. yr BP (calendar years before present = 1950 CE), and that there were large, frequent droughts 1000–700 cal. yr BP followed by wetter/cooler conditions. Variability among regional sites, however, remains problematic. In this study we reconstruct climate on the Northwest Wisconsin Sand Plain (NWSP), USA, to identify potential climatic drivers of previously documented changes in vegetation and fire regimes. Oak pollen was replaced by pollen from xeric pine taxa at several sites on the NWSP ~1425 cal. yr BP, accompanied by a change to larger, less frequent charcoal peaks. Another major vegetation change occurred ~700 cal. yr BP, when pollen of the more mesic P. strobus L. (white pine) increased and charcoal influx decreased. We used a vegetation-independent lake-level record to determine whether long-term changes in moisture availability were associated with these ecosystem changes. Decreases in percent organic matter in shallow-water sediment cores from Cheney Lake indicate that the lake level decreased sharply ~1500 cal. yr BP, consistent with the interpretation that the changes in vegetation and fire regime were driven by a severe and previously undocumented drought. The lake level rose again, reaching approximately modern levels by 800–700 cal. yr BP, consistent with the hypothesis of cooler/wetter conditions in the Upper Midwest in the past ~700 years and with the expansion of mesic taxa on the NWSP 700 cal. yr BP.
ISSN:0959-6836
1477-0911
DOI:10.1177/0959683620972760