Arched beams of Bresse type: observability and application in thermoelasticity
This is the first paper of a trilogy intended by the authors in what concerns a unified approach to the stability of thermoelastic arched beams of Bresse type under Fourier’s law. Our main goal in this starting work is to develop an original observability inequality for conservative Bresse systems w...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2021-02, Vol.103 (3), p.2365-2390 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2390 |
---|---|
container_issue | 3 |
container_start_page | 2365 |
container_title | Nonlinear dynamics |
container_volume | 103 |
creator | Moraes, Gabriel E. Bittencourt Silva, Marcio A. Jorge |
description | This is the first paper of a trilogy intended by the authors in what concerns a unified approach to the stability of thermoelastic arched beams of Bresse type under Fourier’s law. Our main goal in this starting work is to develop an original observability inequality for conservative Bresse systems with non-constant coefficients. Then, as a powerful application, we prove mathematically that the stability of a partially damped model in thermoelastic Bresse beams is invariant under the boundary conditions. The exponential and optimal polynomial decay rates are addressed. This approach gives a new view on the stability of Bresse systems subject to different boundary conditions as well as it provides an accurate answer for the related issue raised by Liu and Rao (Z. Angew. Math. Phys. 60(1): 54–69, 2009) from both the physical and mathematical points of view. |
doi_str_mv | 10.1007/s11071-021-06243-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2497365485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2497365485</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-93c150db7cea7ead0ccd098610e752cfa5d6015a332a5ecf8c71bf150813c9743</originalsourceid><addsrcrecordid>eNp9kE1LxDAQQIMouH78AU8Bz9VJ0jSNt3XxCxa9KOwtpOnU7dJta5IV9t8breDNwzCX92bgEXLB4IoBqOvAGCiWAU9T8Fxk4oDMmFQi44VeHZIZaJ5noGF1TE5C2ACA4FDOyPPcuzXWtEK7DXRo6K3HEJDG_Yg3dKgC-k9btV0b99T2NbXj2LXOxnboadvTuEa_HbCzIbYuMWfkqLFdwPPffUre7u9eF4_Z8uXhaTFfZk4wHTMtHJNQV8qhVWhrcK4GXRYMUEnuGivrApi0QnAr0TWlU6xqklIy4bTKxSm5nO6OfvjYYYhmM-x8n14anmslCpmXMlF8opwfQvDYmNG3W-v3hoH57mambiZ1Mz_djEiSmKSQ4P4d_d_pf6wvxWtw6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2497365485</pqid></control><display><type>article</type><title>Arched beams of Bresse type: observability and application in thermoelasticity</title><source>SpringerLink Journals - AutoHoldings</source><creator>Moraes, Gabriel E. Bittencourt ; Silva, Marcio A. Jorge</creator><creatorcontrib>Moraes, Gabriel E. Bittencourt ; Silva, Marcio A. Jorge</creatorcontrib><description>This is the first paper of a trilogy intended by the authors in what concerns a unified approach to the stability of thermoelastic arched beams of Bresse type under Fourier’s law. Our main goal in this starting work is to develop an original observability inequality for conservative Bresse systems with non-constant coefficients. Then, as a powerful application, we prove mathematically that the stability of a partially damped model in thermoelastic Bresse beams is invariant under the boundary conditions. The exponential and optimal polynomial decay rates are addressed. This approach gives a new view on the stability of Bresse systems subject to different boundary conditions as well as it provides an accurate answer for the related issue raised by Liu and Rao (Z. Angew. Math. Phys. 60(1): 54–69, 2009) from both the physical and mathematical points of view.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-021-06243-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Boundary conditions ; Classical Mechanics ; Control ; Decay rate ; Dynamical Systems ; Engineering ; Mechanical Engineering ; Original Paper ; Polynomials ; Stability ; Thermoelasticity ; Vibration</subject><ispartof>Nonlinear dynamics, 2021-02, Vol.103 (3), p.2365-2390</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-93c150db7cea7ead0ccd098610e752cfa5d6015a332a5ecf8c71bf150813c9743</citedby><cites>FETCH-LOGICAL-c319t-93c150db7cea7ead0ccd098610e752cfa5d6015a332a5ecf8c71bf150813c9743</cites><orcidid>0000-0002-4806-886X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-021-06243-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-021-06243-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27913,27914,41477,42546,51308</link.rule.ids></links><search><creatorcontrib>Moraes, Gabriel E. Bittencourt</creatorcontrib><creatorcontrib>Silva, Marcio A. Jorge</creatorcontrib><title>Arched beams of Bresse type: observability and application in thermoelasticity</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>This is the first paper of a trilogy intended by the authors in what concerns a unified approach to the stability of thermoelastic arched beams of Bresse type under Fourier’s law. Our main goal in this starting work is to develop an original observability inequality for conservative Bresse systems with non-constant coefficients. Then, as a powerful application, we prove mathematically that the stability of a partially damped model in thermoelastic Bresse beams is invariant under the boundary conditions. The exponential and optimal polynomial decay rates are addressed. This approach gives a new view on the stability of Bresse systems subject to different boundary conditions as well as it provides an accurate answer for the related issue raised by Liu and Rao (Z. Angew. Math. Phys. 60(1): 54–69, 2009) from both the physical and mathematical points of view.</description><subject>Automotive Engineering</subject><subject>Boundary conditions</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Decay rate</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Mechanical Engineering</subject><subject>Original Paper</subject><subject>Polynomials</subject><subject>Stability</subject><subject>Thermoelasticity</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LxDAQQIMouH78AU8Bz9VJ0jSNt3XxCxa9KOwtpOnU7dJta5IV9t8breDNwzCX92bgEXLB4IoBqOvAGCiWAU9T8Fxk4oDMmFQi44VeHZIZaJ5noGF1TE5C2ACA4FDOyPPcuzXWtEK7DXRo6K3HEJDG_Yg3dKgC-k9btV0b99T2NbXj2LXOxnboadvTuEa_HbCzIbYuMWfkqLFdwPPffUre7u9eF4_Z8uXhaTFfZk4wHTMtHJNQV8qhVWhrcK4GXRYMUEnuGivrApi0QnAr0TWlU6xqklIy4bTKxSm5nO6OfvjYYYhmM-x8n14anmslCpmXMlF8opwfQvDYmNG3W-v3hoH57mambiZ1Mz_djEiSmKSQ4P4d_d_pf6wvxWtw6Q</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Moraes, Gabriel E. Bittencourt</creator><creator>Silva, Marcio A. Jorge</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-4806-886X</orcidid></search><sort><creationdate>20210201</creationdate><title>Arched beams of Bresse type: observability and application in thermoelasticity</title><author>Moraes, Gabriel E. Bittencourt ; Silva, Marcio A. Jorge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-93c150db7cea7ead0ccd098610e752cfa5d6015a332a5ecf8c71bf150813c9743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Automotive Engineering</topic><topic>Boundary conditions</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Decay rate</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Mechanical Engineering</topic><topic>Original Paper</topic><topic>Polynomials</topic><topic>Stability</topic><topic>Thermoelasticity</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moraes, Gabriel E. Bittencourt</creatorcontrib><creatorcontrib>Silva, Marcio A. Jorge</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moraes, Gabriel E. Bittencourt</au><au>Silva, Marcio A. Jorge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arched beams of Bresse type: observability and application in thermoelasticity</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>103</volume><issue>3</issue><spage>2365</spage><epage>2390</epage><pages>2365-2390</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>This is the first paper of a trilogy intended by the authors in what concerns a unified approach to the stability of thermoelastic arched beams of Bresse type under Fourier’s law. Our main goal in this starting work is to develop an original observability inequality for conservative Bresse systems with non-constant coefficients. Then, as a powerful application, we prove mathematically that the stability of a partially damped model in thermoelastic Bresse beams is invariant under the boundary conditions. The exponential and optimal polynomial decay rates are addressed. This approach gives a new view on the stability of Bresse systems subject to different boundary conditions as well as it provides an accurate answer for the related issue raised by Liu and Rao (Z. Angew. Math. Phys. 60(1): 54–69, 2009) from both the physical and mathematical points of view.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-021-06243-3</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-4806-886X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2021-02, Vol.103 (3), p.2365-2390 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_2497365485 |
source | SpringerLink Journals - AutoHoldings |
subjects | Automotive Engineering Boundary conditions Classical Mechanics Control Decay rate Dynamical Systems Engineering Mechanical Engineering Original Paper Polynomials Stability Thermoelasticity Vibration |
title | Arched beams of Bresse type: observability and application in thermoelasticity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T08%3A24%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arched%20beams%20of%20Bresse%20type:%20observability%20and%20application%20in%20thermoelasticity&rft.jtitle=Nonlinear%20dynamics&rft.au=Moraes,%20Gabriel%20E.%20Bittencourt&rft.date=2021-02-01&rft.volume=103&rft.issue=3&rft.spage=2365&rft.epage=2390&rft.pages=2365-2390&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-021-06243-3&rft_dat=%3Cproquest_cross%3E2497365485%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2497365485&rft_id=info:pmid/&rfr_iscdi=true |