The existence and uniqueness of the solutions of the nonlinear on–off switched systems with switching at variable times
In this paper, by introducing the definition of the solution, we prove the existence and uniqueness of the solution for nonlinear on–off switched systems with switching at variable times (NVTSS). Based on this result, the continuous dependence and differentiability of the solution of NVTSS (4) with...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2021-02, Vol.103 (3), p.2287-2298 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2298 |
---|---|
container_issue | 3 |
container_start_page | 2287 |
container_title | Nonlinear dynamics |
container_volume | 103 |
creator | Li, Huanting Peng, Yunfei Wu, Kuilin |
description | In this paper, by introducing the definition of the solution, we prove the existence and uniqueness of the solution for nonlinear on–off switched systems with switching at variable times (NVTSS). Based on this result, the continuous dependence and differentiability of the solution of NVTSS (4) with respect to the initial state are presented. Besides, the switching phenomenon (the integral curve of NVTSS (4) may hit some surface finite or infinite times causing a rhythmical beating) and periodic solution of NVTSS (4) are also discussed. |
doi_str_mv | 10.1007/s11071-021-06214-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2497364676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2497364676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-3d4008660f0393958c2ef40789e4b37e2008720306301664825641c3983135303</originalsourceid><addsrcrecordid>eNp9ULtOAzEQtBBIhMAPUFmiPlg_zo8SRbykSDRBSmddLr7E0cUO9gVIxz_wh3wJhougo1itdnZmVjsInRO4JADyKhECkhRAcwlKeKEO0ICUkhVU6OkhGoCmvAAN02N0ktIKABgFNUC7ydJi--ZSZ31tceXneOvd89Z6mxIODe7yPoV227ngfwEffOu8rSIO_vP9IzQNTq-uq5d2jtMue60TzvNyjzq_wFWHX6roqllrcefWNp2io6Zqkz3b9yF6ur2ZjO6L8ePdw-h6XNSM6K5gcw6ghIAGmGa6VDW1DQeptOUzJi3NW0mBgWBAhOCKloKTmmnFCCsZsCG66H03MeS_UmdWYRt9Pmko15IJLqTILNqz6hhSirYxm-jWVdwZAuY7YtNHbHLE5idio7KI9aKUyX5h45_1P6ovSDB_KQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2497364676</pqid></control><display><type>article</type><title>The existence and uniqueness of the solutions of the nonlinear on–off switched systems with switching at variable times</title><source>Springer Nature - Complete Springer Journals</source><creator>Li, Huanting ; Peng, Yunfei ; Wu, Kuilin</creator><creatorcontrib>Li, Huanting ; Peng, Yunfei ; Wu, Kuilin</creatorcontrib><description>In this paper, by introducing the definition of the solution, we prove the existence and uniqueness of the solution for nonlinear on–off switched systems with switching at variable times (NVTSS). Based on this result, the continuous dependence and differentiability of the solution of NVTSS (4) with respect to the initial state are presented. Besides, the switching phenomenon (the integral curve of NVTSS (4) may hit some surface finite or infinite times causing a rhythmical beating) and periodic solution of NVTSS (4) are also discussed.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-021-06214-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Classical Mechanics ; Control ; Dynamical Systems ; Engineering ; Mechanical Engineering ; Original Paper ; Switching ; Uniqueness ; Vibration</subject><ispartof>Nonlinear dynamics, 2021-02, Vol.103 (3), p.2287-2298</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-3d4008660f0393958c2ef40789e4b37e2008720306301664825641c3983135303</citedby><cites>FETCH-LOGICAL-c319t-3d4008660f0393958c2ef40789e4b37e2008720306301664825641c3983135303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-021-06214-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-021-06214-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Li, Huanting</creatorcontrib><creatorcontrib>Peng, Yunfei</creatorcontrib><creatorcontrib>Wu, Kuilin</creatorcontrib><title>The existence and uniqueness of the solutions of the nonlinear on–off switched systems with switching at variable times</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>In this paper, by introducing the definition of the solution, we prove the existence and uniqueness of the solution for nonlinear on–off switched systems with switching at variable times (NVTSS). Based on this result, the continuous dependence and differentiability of the solution of NVTSS (4) with respect to the initial state are presented. Besides, the switching phenomenon (the integral curve of NVTSS (4) may hit some surface finite or infinite times causing a rhythmical beating) and periodic solution of NVTSS (4) are also discussed.</description><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Mechanical Engineering</subject><subject>Original Paper</subject><subject>Switching</subject><subject>Uniqueness</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9ULtOAzEQtBBIhMAPUFmiPlg_zo8SRbykSDRBSmddLr7E0cUO9gVIxz_wh3wJhougo1itdnZmVjsInRO4JADyKhECkhRAcwlKeKEO0ICUkhVU6OkhGoCmvAAN02N0ktIKABgFNUC7ydJi--ZSZ31tceXneOvd89Z6mxIODe7yPoV227ngfwEffOu8rSIO_vP9IzQNTq-uq5d2jtMue60TzvNyjzq_wFWHX6roqllrcefWNp2io6Zqkz3b9yF6ur2ZjO6L8ePdw-h6XNSM6K5gcw6ghIAGmGa6VDW1DQeptOUzJi3NW0mBgWBAhOCKloKTmmnFCCsZsCG66H03MeS_UmdWYRt9Pmko15IJLqTILNqz6hhSirYxm-jWVdwZAuY7YtNHbHLE5idio7KI9aKUyX5h45_1P6ovSDB_KQ</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Li, Huanting</creator><creator>Peng, Yunfei</creator><creator>Wu, Kuilin</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210201</creationdate><title>The existence and uniqueness of the solutions of the nonlinear on–off switched systems with switching at variable times</title><author>Li, Huanting ; Peng, Yunfei ; Wu, Kuilin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-3d4008660f0393958c2ef40789e4b37e2008720306301664825641c3983135303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Mechanical Engineering</topic><topic>Original Paper</topic><topic>Switching</topic><topic>Uniqueness</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Huanting</creatorcontrib><creatorcontrib>Peng, Yunfei</creatorcontrib><creatorcontrib>Wu, Kuilin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Huanting</au><au>Peng, Yunfei</au><au>Wu, Kuilin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The existence and uniqueness of the solutions of the nonlinear on–off switched systems with switching at variable times</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>103</volume><issue>3</issue><spage>2287</spage><epage>2298</epage><pages>2287-2298</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>In this paper, by introducing the definition of the solution, we prove the existence and uniqueness of the solution for nonlinear on–off switched systems with switching at variable times (NVTSS). Based on this result, the continuous dependence and differentiability of the solution of NVTSS (4) with respect to the initial state are presented. Besides, the switching phenomenon (the integral curve of NVTSS (4) may hit some surface finite or infinite times causing a rhythmical beating) and periodic solution of NVTSS (4) are also discussed.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-021-06214-8</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2021-02, Vol.103 (3), p.2287-2298 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_2497364676 |
source | Springer Nature - Complete Springer Journals |
subjects | Automotive Engineering Classical Mechanics Control Dynamical Systems Engineering Mechanical Engineering Original Paper Switching Uniqueness Vibration |
title | The existence and uniqueness of the solutions of the nonlinear on–off switched systems with switching at variable times |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T23%3A53%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20existence%20and%20uniqueness%20of%20the%20solutions%20of%20the%20nonlinear%20on%E2%80%93off%20switched%20systems%20with%20switching%20at%20variable%20times&rft.jtitle=Nonlinear%20dynamics&rft.au=Li,%20Huanting&rft.date=2021-02-01&rft.volume=103&rft.issue=3&rft.spage=2287&rft.epage=2298&rft.pages=2287-2298&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-021-06214-8&rft_dat=%3Cproquest_cross%3E2497364676%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2497364676&rft_id=info:pmid/&rfr_iscdi=true |