Broadband microstrip antennas with Cantor set fractal slots for vehicular communications
Vehicle-to-everything communications (V2X), whose main objective is to improve security and efficiency, are provided by ad hoc vehicle networks that allow communication between vehicles. In the current study, a hexagonal microstrip patch antenna has been developed to cover the navigational frequenci...
Gespeichert in:
Veröffentlicht in: | International journal of microwave and wireless technologies 2021-04, Vol.13 (3), p.295-308 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 308 |
---|---|
container_issue | 3 |
container_start_page | 295 |
container_title | International journal of microwave and wireless technologies |
container_volume | 13 |
creator | Ez-Zaki, Fatima Belahrach, Hassan Ghammaz, Abdelilah |
description | Vehicle-to-everything communications (V2X), whose main objective is to improve security and efficiency, are provided by ad hoc vehicle networks that allow communication between vehicles. In the current study, a hexagonal microstrip patch antenna has been developed to cover the navigational frequencies, WiMAX at 3.7 GHz and DSRC/IEEE802.11p at 5.9 GHz to meet the demands of various vehicular applications. The antenna design is based on Cantor fractal slot, partial ground plane, and inset feed which is directly fed through the microstrip line. The proposed antenna shields the frequency band from 3.22 to 6.5 GHz with VSWR $\lt$2 within all the frequency bands. The presented antenna can resonate well in the 5.85–5.95 GHz band assigned for DSRC/IEEE802.11p and 3.7 GHz assigned for LTE/V2X. Simulated antenna gain varies from 3.06 to 5.25 dB within the operated frequency range providing an omnidirectional simulated radiation pattern in the most azimuth plane. To prove the validity of the simulation results, the chosen antenna structure has been fabricated and tested using a vector network analyzer MS2630. The measurement shows good results, which make the antenna suitable for wireless applications of interest. |
doi_str_mv | 10.1017/S1759078720000719 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2497037863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1759078720000719</cupid><sourcerecordid>2497037863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-36838e24fd960727fe4d51cd171152aa22a166da217328620aac17a1383437623</originalsourceid><addsrcrecordid>eNp1UE1LxDAQDaLguvoDvAU8r2aSNpMedfELFjyo4K3MpqnbpW3WJFX893ZZ0YM4l5l5vPeGeYydgjgHAXjxCJgXAg1KMRZCsccmW2gmsMj3f2aDh-woxrUQGo3BCXu5Cp6qJfUV7xobfEyh2XDqk-t7ivyjSSs-H1cfeHSJ14FsopbH1qfI6xF9d6vGDi0Fbn3XDX1jKTW-j8fsoKY2upPvPmXPN9dP87vZ4uH2fn65mFkFmGZKG2WczOqq0AIl1i6rcrAVIEAuiaQk0LoiCaik0VIQWUACZVSmUEs1ZWc7303wb4OLqVz7IfTjyVJmBQqFRquRBTvW9sUYXF1uQtNR-CxBlNsAyz8Bjhr1raFuGZrq1f1a_6_6AqZIcfs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2497037863</pqid></control><display><type>article</type><title>Broadband microstrip antennas with Cantor set fractal slots for vehicular communications</title><source>Cambridge Journals</source><creator>Ez-Zaki, Fatima ; Belahrach, Hassan ; Ghammaz, Abdelilah</creator><creatorcontrib>Ez-Zaki, Fatima ; Belahrach, Hassan ; Ghammaz, Abdelilah</creatorcontrib><description>Vehicle-to-everything communications (V2X), whose main objective is to improve security and efficiency, are provided by ad hoc vehicle networks that allow communication between vehicles. In the current study, a hexagonal microstrip patch antenna has been developed to cover the navigational frequencies, WiMAX at 3.7 GHz and DSRC/IEEE802.11p at 5.9 GHz to meet the demands of various vehicular applications. The antenna design is based on Cantor fractal slot, partial ground plane, and inset feed which is directly fed through the microstrip line. The proposed antenna shields the frequency band from 3.22 to 6.5 GHz with VSWR $\lt$2 within all the frequency bands. The presented antenna can resonate well in the 5.85–5.95 GHz band assigned for DSRC/IEEE802.11p and 3.7 GHz assigned for LTE/V2X. Simulated antenna gain varies from 3.06 to 5.25 dB within the operated frequency range providing an omnidirectional simulated radiation pattern in the most azimuth plane. To prove the validity of the simulation results, the chosen antenna structure has been fabricated and tested using a vector network analyzer MS2630. The measurement shows good results, which make the antenna suitable for wireless applications of interest.</description><identifier>ISSN: 1759-0787</identifier><identifier>EISSN: 1759-0795</identifier><identifier>DOI: 10.1017/S1759078720000719</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Ad hoc networks ; Antenna design ; Antenna Design, Modeling and Measurements ; Antenna gain ; Antennas ; Bandwidths ; Broadband ; Communication ; Design ; Efficiency ; Fractals ; Frequencies ; Frequency ranges ; Geometry ; Ground plane ; Interoperability ; Microstrip antennas ; Microstrip transmission lines ; Network analysers ; Patch antennas ; Simulation ; Traffic congestion ; Wireless communications</subject><ispartof>International journal of microwave and wireless technologies, 2021-04, Vol.13 (3), p.295-308</ispartof><rights>Copyright © Cambridge University Press and the European Microwave Association 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-36838e24fd960727fe4d51cd171152aa22a166da217328620aac17a1383437623</citedby><cites>FETCH-LOGICAL-c317t-36838e24fd960727fe4d51cd171152aa22a166da217328620aac17a1383437623</cites><orcidid>0000-0002-0850-0718</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1759078720000719/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Ez-Zaki, Fatima</creatorcontrib><creatorcontrib>Belahrach, Hassan</creatorcontrib><creatorcontrib>Ghammaz, Abdelilah</creatorcontrib><title>Broadband microstrip antennas with Cantor set fractal slots for vehicular communications</title><title>International journal of microwave and wireless technologies</title><addtitle>Int. J. Microw. Wireless Technol</addtitle><description>Vehicle-to-everything communications (V2X), whose main objective is to improve security and efficiency, are provided by ad hoc vehicle networks that allow communication between vehicles. In the current study, a hexagonal microstrip patch antenna has been developed to cover the navigational frequencies, WiMAX at 3.7 GHz and DSRC/IEEE802.11p at 5.9 GHz to meet the demands of various vehicular applications. The antenna design is based on Cantor fractal slot, partial ground plane, and inset feed which is directly fed through the microstrip line. The proposed antenna shields the frequency band from 3.22 to 6.5 GHz with VSWR $\lt$2 within all the frequency bands. The presented antenna can resonate well in the 5.85–5.95 GHz band assigned for DSRC/IEEE802.11p and 3.7 GHz assigned for LTE/V2X. Simulated antenna gain varies from 3.06 to 5.25 dB within the operated frequency range providing an omnidirectional simulated radiation pattern in the most azimuth plane. To prove the validity of the simulation results, the chosen antenna structure has been fabricated and tested using a vector network analyzer MS2630. The measurement shows good results, which make the antenna suitable for wireless applications of interest.</description><subject>Ad hoc networks</subject><subject>Antenna design</subject><subject>Antenna Design, Modeling and Measurements</subject><subject>Antenna gain</subject><subject>Antennas</subject><subject>Bandwidths</subject><subject>Broadband</subject><subject>Communication</subject><subject>Design</subject><subject>Efficiency</subject><subject>Fractals</subject><subject>Frequencies</subject><subject>Frequency ranges</subject><subject>Geometry</subject><subject>Ground plane</subject><subject>Interoperability</subject><subject>Microstrip antennas</subject><subject>Microstrip transmission lines</subject><subject>Network analysers</subject><subject>Patch antennas</subject><subject>Simulation</subject><subject>Traffic congestion</subject><subject>Wireless communications</subject><issn>1759-0787</issn><issn>1759-0795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1UE1LxDAQDaLguvoDvAU8r2aSNpMedfELFjyo4K3MpqnbpW3WJFX893ZZ0YM4l5l5vPeGeYydgjgHAXjxCJgXAg1KMRZCsccmW2gmsMj3f2aDh-woxrUQGo3BCXu5Cp6qJfUV7xobfEyh2XDqk-t7ivyjSSs-H1cfeHSJ14FsopbH1qfI6xF9d6vGDi0Fbn3XDX1jKTW-j8fsoKY2upPvPmXPN9dP87vZ4uH2fn65mFkFmGZKG2WczOqq0AIl1i6rcrAVIEAuiaQk0LoiCaik0VIQWUACZVSmUEs1ZWc7303wb4OLqVz7IfTjyVJmBQqFRquRBTvW9sUYXF1uQtNR-CxBlNsAyz8Bjhr1raFuGZrq1f1a_6_6AqZIcfs</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Ez-Zaki, Fatima</creator><creator>Belahrach, Hassan</creator><creator>Ghammaz, Abdelilah</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-0850-0718</orcidid></search><sort><creationdate>202104</creationdate><title>Broadband microstrip antennas with Cantor set fractal slots for vehicular communications</title><author>Ez-Zaki, Fatima ; Belahrach, Hassan ; Ghammaz, Abdelilah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-36838e24fd960727fe4d51cd171152aa22a166da217328620aac17a1383437623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ad hoc networks</topic><topic>Antenna design</topic><topic>Antenna Design, Modeling and Measurements</topic><topic>Antenna gain</topic><topic>Antennas</topic><topic>Bandwidths</topic><topic>Broadband</topic><topic>Communication</topic><topic>Design</topic><topic>Efficiency</topic><topic>Fractals</topic><topic>Frequencies</topic><topic>Frequency ranges</topic><topic>Geometry</topic><topic>Ground plane</topic><topic>Interoperability</topic><topic>Microstrip antennas</topic><topic>Microstrip transmission lines</topic><topic>Network analysers</topic><topic>Patch antennas</topic><topic>Simulation</topic><topic>Traffic congestion</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ez-Zaki, Fatima</creatorcontrib><creatorcontrib>Belahrach, Hassan</creatorcontrib><creatorcontrib>Ghammaz, Abdelilah</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>International journal of microwave and wireless technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ez-Zaki, Fatima</au><au>Belahrach, Hassan</au><au>Ghammaz, Abdelilah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Broadband microstrip antennas with Cantor set fractal slots for vehicular communications</atitle><jtitle>International journal of microwave and wireless technologies</jtitle><addtitle>Int. J. Microw. Wireless Technol</addtitle><date>2021-04</date><risdate>2021</risdate><volume>13</volume><issue>3</issue><spage>295</spage><epage>308</epage><pages>295-308</pages><issn>1759-0787</issn><eissn>1759-0795</eissn><abstract>Vehicle-to-everything communications (V2X), whose main objective is to improve security and efficiency, are provided by ad hoc vehicle networks that allow communication between vehicles. In the current study, a hexagonal microstrip patch antenna has been developed to cover the navigational frequencies, WiMAX at 3.7 GHz and DSRC/IEEE802.11p at 5.9 GHz to meet the demands of various vehicular applications. The antenna design is based on Cantor fractal slot, partial ground plane, and inset feed which is directly fed through the microstrip line. The proposed antenna shields the frequency band from 3.22 to 6.5 GHz with VSWR $\lt$2 within all the frequency bands. The presented antenna can resonate well in the 5.85–5.95 GHz band assigned for DSRC/IEEE802.11p and 3.7 GHz assigned for LTE/V2X. Simulated antenna gain varies from 3.06 to 5.25 dB within the operated frequency range providing an omnidirectional simulated radiation pattern in the most azimuth plane. To prove the validity of the simulation results, the chosen antenna structure has been fabricated and tested using a vector network analyzer MS2630. The measurement shows good results, which make the antenna suitable for wireless applications of interest.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S1759078720000719</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0850-0718</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1759-0787 |
ispartof | International journal of microwave and wireless technologies, 2021-04, Vol.13 (3), p.295-308 |
issn | 1759-0787 1759-0795 |
language | eng |
recordid | cdi_proquest_journals_2497037863 |
source | Cambridge Journals |
subjects | Ad hoc networks Antenna design Antenna Design, Modeling and Measurements Antenna gain Antennas Bandwidths Broadband Communication Design Efficiency Fractals Frequencies Frequency ranges Geometry Ground plane Interoperability Microstrip antennas Microstrip transmission lines Network analysers Patch antennas Simulation Traffic congestion Wireless communications |
title | Broadband microstrip antennas with Cantor set fractal slots for vehicular communications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A25%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Broadband%20microstrip%20antennas%20with%20Cantor%20set%20fractal%20slots%20for%20vehicular%20communications&rft.jtitle=International%20journal%20of%20microwave%20and%20wireless%20technologies&rft.au=Ez-Zaki,%20Fatima&rft.date=2021-04&rft.volume=13&rft.issue=3&rft.spage=295&rft.epage=308&rft.pages=295-308&rft.issn=1759-0787&rft.eissn=1759-0795&rft_id=info:doi/10.1017/S1759078720000719&rft_dat=%3Cproquest_cross%3E2497037863%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2497037863&rft_id=info:pmid/&rft_cupid=10_1017_S1759078720000719&rfr_iscdi=true |