Broadband microstrip antennas with Cantor set fractal slots for vehicular communications

Vehicle-to-everything communications (V2X), whose main objective is to improve security and efficiency, are provided by ad hoc vehicle networks that allow communication between vehicles. In the current study, a hexagonal microstrip patch antenna has been developed to cover the navigational frequenci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of microwave and wireless technologies 2021-04, Vol.13 (3), p.295-308
Hauptverfasser: Ez-Zaki, Fatima, Belahrach, Hassan, Ghammaz, Abdelilah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 308
container_issue 3
container_start_page 295
container_title International journal of microwave and wireless technologies
container_volume 13
creator Ez-Zaki, Fatima
Belahrach, Hassan
Ghammaz, Abdelilah
description Vehicle-to-everything communications (V2X), whose main objective is to improve security and efficiency, are provided by ad hoc vehicle networks that allow communication between vehicles. In the current study, a hexagonal microstrip patch antenna has been developed to cover the navigational frequencies, WiMAX at 3.7 GHz and DSRC/IEEE802.11p at 5.9 GHz to meet the demands of various vehicular applications. The antenna design is based on Cantor fractal slot, partial ground plane, and inset feed which is directly fed through the microstrip line. The proposed antenna shields the frequency band from 3.22 to 6.5 GHz with VSWR $\lt$2 within all the frequency bands. The presented antenna can resonate well in the 5.85–5.95 GHz band assigned for DSRC/IEEE802.11p and 3.7 GHz assigned for LTE/V2X. Simulated antenna gain varies from 3.06 to 5.25 dB within the operated frequency range providing an omnidirectional simulated radiation pattern in the most azimuth plane. To prove the validity of the simulation results, the chosen antenna structure has been fabricated and tested using a vector network analyzer MS2630. The measurement shows good results, which make the antenna suitable for wireless applications of interest.
doi_str_mv 10.1017/S1759078720000719
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2497037863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1759078720000719</cupid><sourcerecordid>2497037863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-36838e24fd960727fe4d51cd171152aa22a166da217328620aac17a1383437623</originalsourceid><addsrcrecordid>eNp1UE1LxDAQDaLguvoDvAU8r2aSNpMedfELFjyo4K3MpqnbpW3WJFX893ZZ0YM4l5l5vPeGeYydgjgHAXjxCJgXAg1KMRZCsccmW2gmsMj3f2aDh-woxrUQGo3BCXu5Cp6qJfUV7xobfEyh2XDqk-t7ivyjSSs-H1cfeHSJ14FsopbH1qfI6xF9d6vGDi0Fbn3XDX1jKTW-j8fsoKY2upPvPmXPN9dP87vZ4uH2fn65mFkFmGZKG2WczOqq0AIl1i6rcrAVIEAuiaQk0LoiCaik0VIQWUACZVSmUEs1ZWc7303wb4OLqVz7IfTjyVJmBQqFRquRBTvW9sUYXF1uQtNR-CxBlNsAyz8Bjhr1raFuGZrq1f1a_6_6AqZIcfs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2497037863</pqid></control><display><type>article</type><title>Broadband microstrip antennas with Cantor set fractal slots for vehicular communications</title><source>Cambridge Journals</source><creator>Ez-Zaki, Fatima ; Belahrach, Hassan ; Ghammaz, Abdelilah</creator><creatorcontrib>Ez-Zaki, Fatima ; Belahrach, Hassan ; Ghammaz, Abdelilah</creatorcontrib><description>Vehicle-to-everything communications (V2X), whose main objective is to improve security and efficiency, are provided by ad hoc vehicle networks that allow communication between vehicles. In the current study, a hexagonal microstrip patch antenna has been developed to cover the navigational frequencies, WiMAX at 3.7 GHz and DSRC/IEEE802.11p at 5.9 GHz to meet the demands of various vehicular applications. The antenna design is based on Cantor fractal slot, partial ground plane, and inset feed which is directly fed through the microstrip line. The proposed antenna shields the frequency band from 3.22 to 6.5 GHz with VSWR $\lt$2 within all the frequency bands. The presented antenna can resonate well in the 5.85–5.95 GHz band assigned for DSRC/IEEE802.11p and 3.7 GHz assigned for LTE/V2X. Simulated antenna gain varies from 3.06 to 5.25 dB within the operated frequency range providing an omnidirectional simulated radiation pattern in the most azimuth plane. To prove the validity of the simulation results, the chosen antenna structure has been fabricated and tested using a vector network analyzer MS2630. The measurement shows good results, which make the antenna suitable for wireless applications of interest.</description><identifier>ISSN: 1759-0787</identifier><identifier>EISSN: 1759-0795</identifier><identifier>DOI: 10.1017/S1759078720000719</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Ad hoc networks ; Antenna design ; Antenna Design, Modeling and Measurements ; Antenna gain ; Antennas ; Bandwidths ; Broadband ; Communication ; Design ; Efficiency ; Fractals ; Frequencies ; Frequency ranges ; Geometry ; Ground plane ; Interoperability ; Microstrip antennas ; Microstrip transmission lines ; Network analysers ; Patch antennas ; Simulation ; Traffic congestion ; Wireless communications</subject><ispartof>International journal of microwave and wireless technologies, 2021-04, Vol.13 (3), p.295-308</ispartof><rights>Copyright © Cambridge University Press and the European Microwave Association 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-36838e24fd960727fe4d51cd171152aa22a166da217328620aac17a1383437623</citedby><cites>FETCH-LOGICAL-c317t-36838e24fd960727fe4d51cd171152aa22a166da217328620aac17a1383437623</cites><orcidid>0000-0002-0850-0718</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1759078720000719/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Ez-Zaki, Fatima</creatorcontrib><creatorcontrib>Belahrach, Hassan</creatorcontrib><creatorcontrib>Ghammaz, Abdelilah</creatorcontrib><title>Broadband microstrip antennas with Cantor set fractal slots for vehicular communications</title><title>International journal of microwave and wireless technologies</title><addtitle>Int. J. Microw. Wireless Technol</addtitle><description>Vehicle-to-everything communications (V2X), whose main objective is to improve security and efficiency, are provided by ad hoc vehicle networks that allow communication between vehicles. In the current study, a hexagonal microstrip patch antenna has been developed to cover the navigational frequencies, WiMAX at 3.7 GHz and DSRC/IEEE802.11p at 5.9 GHz to meet the demands of various vehicular applications. The antenna design is based on Cantor fractal slot, partial ground plane, and inset feed which is directly fed through the microstrip line. The proposed antenna shields the frequency band from 3.22 to 6.5 GHz with VSWR $\lt$2 within all the frequency bands. The presented antenna can resonate well in the 5.85–5.95 GHz band assigned for DSRC/IEEE802.11p and 3.7 GHz assigned for LTE/V2X. Simulated antenna gain varies from 3.06 to 5.25 dB within the operated frequency range providing an omnidirectional simulated radiation pattern in the most azimuth plane. To prove the validity of the simulation results, the chosen antenna structure has been fabricated and tested using a vector network analyzer MS2630. The measurement shows good results, which make the antenna suitable for wireless applications of interest.</description><subject>Ad hoc networks</subject><subject>Antenna design</subject><subject>Antenna Design, Modeling and Measurements</subject><subject>Antenna gain</subject><subject>Antennas</subject><subject>Bandwidths</subject><subject>Broadband</subject><subject>Communication</subject><subject>Design</subject><subject>Efficiency</subject><subject>Fractals</subject><subject>Frequencies</subject><subject>Frequency ranges</subject><subject>Geometry</subject><subject>Ground plane</subject><subject>Interoperability</subject><subject>Microstrip antennas</subject><subject>Microstrip transmission lines</subject><subject>Network analysers</subject><subject>Patch antennas</subject><subject>Simulation</subject><subject>Traffic congestion</subject><subject>Wireless communications</subject><issn>1759-0787</issn><issn>1759-0795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1UE1LxDAQDaLguvoDvAU8r2aSNpMedfELFjyo4K3MpqnbpW3WJFX893ZZ0YM4l5l5vPeGeYydgjgHAXjxCJgXAg1KMRZCsccmW2gmsMj3f2aDh-woxrUQGo3BCXu5Cp6qJfUV7xobfEyh2XDqk-t7ivyjSSs-H1cfeHSJ14FsopbH1qfI6xF9d6vGDi0Fbn3XDX1jKTW-j8fsoKY2upPvPmXPN9dP87vZ4uH2fn65mFkFmGZKG2WczOqq0AIl1i6rcrAVIEAuiaQk0LoiCaik0VIQWUACZVSmUEs1ZWc7303wb4OLqVz7IfTjyVJmBQqFRquRBTvW9sUYXF1uQtNR-CxBlNsAyz8Bjhr1raFuGZrq1f1a_6_6AqZIcfs</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Ez-Zaki, Fatima</creator><creator>Belahrach, Hassan</creator><creator>Ghammaz, Abdelilah</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-0850-0718</orcidid></search><sort><creationdate>202104</creationdate><title>Broadband microstrip antennas with Cantor set fractal slots for vehicular communications</title><author>Ez-Zaki, Fatima ; Belahrach, Hassan ; Ghammaz, Abdelilah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-36838e24fd960727fe4d51cd171152aa22a166da217328620aac17a1383437623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ad hoc networks</topic><topic>Antenna design</topic><topic>Antenna Design, Modeling and Measurements</topic><topic>Antenna gain</topic><topic>Antennas</topic><topic>Bandwidths</topic><topic>Broadband</topic><topic>Communication</topic><topic>Design</topic><topic>Efficiency</topic><topic>Fractals</topic><topic>Frequencies</topic><topic>Frequency ranges</topic><topic>Geometry</topic><topic>Ground plane</topic><topic>Interoperability</topic><topic>Microstrip antennas</topic><topic>Microstrip transmission lines</topic><topic>Network analysers</topic><topic>Patch antennas</topic><topic>Simulation</topic><topic>Traffic congestion</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ez-Zaki, Fatima</creatorcontrib><creatorcontrib>Belahrach, Hassan</creatorcontrib><creatorcontrib>Ghammaz, Abdelilah</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>International journal of microwave and wireless technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ez-Zaki, Fatima</au><au>Belahrach, Hassan</au><au>Ghammaz, Abdelilah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Broadband microstrip antennas with Cantor set fractal slots for vehicular communications</atitle><jtitle>International journal of microwave and wireless technologies</jtitle><addtitle>Int. J. Microw. Wireless Technol</addtitle><date>2021-04</date><risdate>2021</risdate><volume>13</volume><issue>3</issue><spage>295</spage><epage>308</epage><pages>295-308</pages><issn>1759-0787</issn><eissn>1759-0795</eissn><abstract>Vehicle-to-everything communications (V2X), whose main objective is to improve security and efficiency, are provided by ad hoc vehicle networks that allow communication between vehicles. In the current study, a hexagonal microstrip patch antenna has been developed to cover the navigational frequencies, WiMAX at 3.7 GHz and DSRC/IEEE802.11p at 5.9 GHz to meet the demands of various vehicular applications. The antenna design is based on Cantor fractal slot, partial ground plane, and inset feed which is directly fed through the microstrip line. The proposed antenna shields the frequency band from 3.22 to 6.5 GHz with VSWR $\lt$2 within all the frequency bands. The presented antenna can resonate well in the 5.85–5.95 GHz band assigned for DSRC/IEEE802.11p and 3.7 GHz assigned for LTE/V2X. Simulated antenna gain varies from 3.06 to 5.25 dB within the operated frequency range providing an omnidirectional simulated radiation pattern in the most azimuth plane. To prove the validity of the simulation results, the chosen antenna structure has been fabricated and tested using a vector network analyzer MS2630. The measurement shows good results, which make the antenna suitable for wireless applications of interest.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S1759078720000719</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0850-0718</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1759-0787
ispartof International journal of microwave and wireless technologies, 2021-04, Vol.13 (3), p.295-308
issn 1759-0787
1759-0795
language eng
recordid cdi_proquest_journals_2497037863
source Cambridge Journals
subjects Ad hoc networks
Antenna design
Antenna Design, Modeling and Measurements
Antenna gain
Antennas
Bandwidths
Broadband
Communication
Design
Efficiency
Fractals
Frequencies
Frequency ranges
Geometry
Ground plane
Interoperability
Microstrip antennas
Microstrip transmission lines
Network analysers
Patch antennas
Simulation
Traffic congestion
Wireless communications
title Broadband microstrip antennas with Cantor set fractal slots for vehicular communications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A25%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Broadband%20microstrip%20antennas%20with%20Cantor%20set%20fractal%20slots%20for%20vehicular%20communications&rft.jtitle=International%20journal%20of%20microwave%20and%20wireless%20technologies&rft.au=Ez-Zaki,%20Fatima&rft.date=2021-04&rft.volume=13&rft.issue=3&rft.spage=295&rft.epage=308&rft.pages=295-308&rft.issn=1759-0787&rft.eissn=1759-0795&rft_id=info:doi/10.1017/S1759078720000719&rft_dat=%3Cproquest_cross%3E2497037863%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2497037863&rft_id=info:pmid/&rft_cupid=10_1017_S1759078720000719&rfr_iscdi=true