UCB Momentum Q-learning: Correcting the bias without forgetting

We propose UCBMQ, Upper Confidence Bound Momentum Q-learning, a new algorithm for reinforcement learning in tabular and possibly stage-dependent, episodic Markov decision process. UCBMQ is based on Q-learning where we add a momentum term and rely on the principle of optimism in face of uncertainty t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-03
Hauptverfasser: Menard, Pierre, Omar Darwiche Domingues, Shang, Xuedong, Valko, Michal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Menard, Pierre
Omar Darwiche Domingues
Shang, Xuedong
Valko, Michal
description We propose UCBMQ, Upper Confidence Bound Momentum Q-learning, a new algorithm for reinforcement learning in tabular and possibly stage-dependent, episodic Markov decision process. UCBMQ is based on Q-learning where we add a momentum term and rely on the principle of optimism in face of uncertainty to deal with exploration. Our new technical ingredient of UCBMQ is the use of momentum to correct the bias that Q-learning suffers while, at the same time, limiting the impact it has on the second-order term of the regret. For UCBMQ, we are able to guarantee a regret of at most \(O(\sqrt{H^3SAT}+ H^4 S A )\) where \(H\) is the length of an episode, \(S\) the number of states, \(A\) the number of actions, \(T\) the number of episodes and ignoring terms in poly-\(\log(SAHT)\). Notably, UCBMQ is the first algorithm that simultaneously matches the lower bound of \(\Omega(\sqrt{H^3SAT})\) for large enough \(T\) and has a second-order term (with respect to the horizon \(T\)) that scales only linearly with the number of states \(S\).
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2497033145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2497033145</sourcerecordid><originalsourceid>FETCH-proquest_journals_24970331453</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwD3V2UvDNz03NKynNVQjUzUlNLMrLzEu3UnDOLypKTS4BshVKMlIVkjITixXKM0sy8ktLFNLyi9JTS0ByPAysaYk5xam8UJqbQdnNNcTZQ7egKL-wNLW4JD4rv7QoDygVb2RiaW4AdImJqTFxqgC9EThh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2497033145</pqid></control><display><type>article</type><title>UCB Momentum Q-learning: Correcting the bias without forgetting</title><source>Free E- Journals</source><creator>Menard, Pierre ; Omar Darwiche Domingues ; Shang, Xuedong ; Valko, Michal</creator><creatorcontrib>Menard, Pierre ; Omar Darwiche Domingues ; Shang, Xuedong ; Valko, Michal</creatorcontrib><description>We propose UCBMQ, Upper Confidence Bound Momentum Q-learning, a new algorithm for reinforcement learning in tabular and possibly stage-dependent, episodic Markov decision process. UCBMQ is based on Q-learning where we add a momentum term and rely on the principle of optimism in face of uncertainty to deal with exploration. Our new technical ingredient of UCBMQ is the use of momentum to correct the bias that Q-learning suffers while, at the same time, limiting the impact it has on the second-order term of the regret. For UCBMQ, we are able to guarantee a regret of at most \(O(\sqrt{H^3SAT}+ H^4 S A )\) where \(H\) is the length of an episode, \(S\) the number of states, \(A\) the number of actions, \(T\) the number of episodes and ignoring terms in poly-\(\log(SAHT)\). Notably, UCBMQ is the first algorithm that simultaneously matches the lower bound of \(\Omega(\sqrt{H^3SAT})\) for large enough \(T\) and has a second-order term (with respect to the horizon \(T\)) that scales only linearly with the number of states \(S\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Bias ; Decision theory ; Lower bounds ; Machine learning ; Markov processes ; Momentum</subject><ispartof>arXiv.org, 2022-03</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Menard, Pierre</creatorcontrib><creatorcontrib>Omar Darwiche Domingues</creatorcontrib><creatorcontrib>Shang, Xuedong</creatorcontrib><creatorcontrib>Valko, Michal</creatorcontrib><title>UCB Momentum Q-learning: Correcting the bias without forgetting</title><title>arXiv.org</title><description>We propose UCBMQ, Upper Confidence Bound Momentum Q-learning, a new algorithm for reinforcement learning in tabular and possibly stage-dependent, episodic Markov decision process. UCBMQ is based on Q-learning where we add a momentum term and rely on the principle of optimism in face of uncertainty to deal with exploration. Our new technical ingredient of UCBMQ is the use of momentum to correct the bias that Q-learning suffers while, at the same time, limiting the impact it has on the second-order term of the regret. For UCBMQ, we are able to guarantee a regret of at most \(O(\sqrt{H^3SAT}+ H^4 S A )\) where \(H\) is the length of an episode, \(S\) the number of states, \(A\) the number of actions, \(T\) the number of episodes and ignoring terms in poly-\(\log(SAHT)\). Notably, UCBMQ is the first algorithm that simultaneously matches the lower bound of \(\Omega(\sqrt{H^3SAT})\) for large enough \(T\) and has a second-order term (with respect to the horizon \(T\)) that scales only linearly with the number of states \(S\).</description><subject>Algorithms</subject><subject>Bias</subject><subject>Decision theory</subject><subject>Lower bounds</subject><subject>Machine learning</subject><subject>Markov processes</subject><subject>Momentum</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwD3V2UvDNz03NKynNVQjUzUlNLMrLzEu3UnDOLypKTS4BshVKMlIVkjITixXKM0sy8ktLFNLyi9JTS0ByPAysaYk5xam8UJqbQdnNNcTZQ7egKL-wNLW4JD4rv7QoDygVb2RiaW4AdImJqTFxqgC9EThh</recordid><startdate>20220318</startdate><enddate>20220318</enddate><creator>Menard, Pierre</creator><creator>Omar Darwiche Domingues</creator><creator>Shang, Xuedong</creator><creator>Valko, Michal</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220318</creationdate><title>UCB Momentum Q-learning: Correcting the bias without forgetting</title><author>Menard, Pierre ; Omar Darwiche Domingues ; Shang, Xuedong ; Valko, Michal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24970331453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Bias</topic><topic>Decision theory</topic><topic>Lower bounds</topic><topic>Machine learning</topic><topic>Markov processes</topic><topic>Momentum</topic><toplevel>online_resources</toplevel><creatorcontrib>Menard, Pierre</creatorcontrib><creatorcontrib>Omar Darwiche Domingues</creatorcontrib><creatorcontrib>Shang, Xuedong</creatorcontrib><creatorcontrib>Valko, Michal</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Menard, Pierre</au><au>Omar Darwiche Domingues</au><au>Shang, Xuedong</au><au>Valko, Michal</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>UCB Momentum Q-learning: Correcting the bias without forgetting</atitle><jtitle>arXiv.org</jtitle><date>2022-03-18</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>We propose UCBMQ, Upper Confidence Bound Momentum Q-learning, a new algorithm for reinforcement learning in tabular and possibly stage-dependent, episodic Markov decision process. UCBMQ is based on Q-learning where we add a momentum term and rely on the principle of optimism in face of uncertainty to deal with exploration. Our new technical ingredient of UCBMQ is the use of momentum to correct the bias that Q-learning suffers while, at the same time, limiting the impact it has on the second-order term of the regret. For UCBMQ, we are able to guarantee a regret of at most \(O(\sqrt{H^3SAT}+ H^4 S A )\) where \(H\) is the length of an episode, \(S\) the number of states, \(A\) the number of actions, \(T\) the number of episodes and ignoring terms in poly-\(\log(SAHT)\). Notably, UCBMQ is the first algorithm that simultaneously matches the lower bound of \(\Omega(\sqrt{H^3SAT})\) for large enough \(T\) and has a second-order term (with respect to the horizon \(T\)) that scales only linearly with the number of states \(S\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2497033145
source Free E- Journals
subjects Algorithms
Bias
Decision theory
Lower bounds
Machine learning
Markov processes
Momentum
title UCB Momentum Q-learning: Correcting the bias without forgetting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A40%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=UCB%20Momentum%20Q-learning:%20Correcting%20the%20bias%20without%20forgetting&rft.jtitle=arXiv.org&rft.au=Menard,%20Pierre&rft.date=2022-03-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2497033145%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2497033145&rft_id=info:pmid/&rfr_iscdi=true