Quantifying mixing and available potential energy in vertically periodic simulations of stratified flows

Turbulent mixing exerts a significant influence on many physical processes in the ocean. In a stably stratified Boussinesq fluid, this irreversible mixing describes the conversion of available potential energy (APE) to background potential energy (BPE). In some settings the APE framework is difficul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2021-03, Vol.914, Article A12
Hauptverfasser: Howland, Christopher J., Taylor, John R., Caulfield, C.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 914
creator Howland, Christopher J.
Taylor, John R.
Caulfield, C.P.
description Turbulent mixing exerts a significant influence on many physical processes in the ocean. In a stably stratified Boussinesq fluid, this irreversible mixing describes the conversion of available potential energy (APE) to background potential energy (BPE). In some settings the APE framework is difficult to apply and approximate measures are used to estimate irreversible mixing. For example, numerical simulations of stratified turbulence often use triply periodic domains to increase computational efficiency. In this set-up, however, BPE is not uniquely defined and the method of Winters et al. (J. Fluid Mech., vol. 289, 1995, pp. 115–128) cannot be directly applied to calculate the APE. We propose a new technique to calculate APE in periodic domains with a mean stratification. By defining a control volume bounded by surfaces of constant buoyancy, we can construct an appropriate background buoyancy profile $b_\ast (z,t)$ and accurately quantify diapycnal mixing in such systems. This technique also permits the accurate calculation of a finite-amplitude local APE density in periodic domains. The evolution of APE is analysed in various turbulent stratified flow simulations. We show that the mean dissipation rate of buoyancy variance $\chi$ provides a good approximation to the mean diapycnal mixing rate, even in flows with significant variations in local stratification. When quantifying measures of mixing efficiency in transient flows, we find significant variation depending on whether laminar diffusion of a mean flow is included in the kinetic energy dissipation rate. We discuss how best to interpret these results in the context of quantifying diapycnal diffusivity in real oceanographic flows.
doi_str_mv 10.1017/jfm.2020.979
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2496973007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2020_979</cupid><sourcerecordid>2496973007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-9d33c4cd873a98e79b2222ae506129db578c619003323ef94c5089e5dd0350163</originalsourceid><addsrcrecordid>eNptkE1LxDAQhoMouK7e_AEBr7ZOkrZpjrL4BQsi6LmkTbJmST9M2tX-e7Psghfn8jLwzDvwIHRNICVA-N3WtCkFCqng4gQtSFaIhBdZfooWAJQmhFA4RxchbAEIA8EX6PNtkt1ozWy7DW7tzz5kp7DcSetk7TQe-lFHQjqsO-03M7Yd3mk_2kY6N-NBe9sr2-Bg28nJ0fZdwL3BYfRxMVYrbFz_HS7RmZEu6KtjLtHH48P76jlZvz69rO7XSZMRGBOhGGuyRpWcSVFqLmoaR-ocCkKFqnNeNgURAIxRpo3ImhxKoXOlgOVACrZEN4fewfdfkw5jte0n38WXFc1EITgD4JG6PVCN70Pw2lSDt630c0Wg2rusostq77KKLiOeHnHZ1t6qjf5r_ffgF4nHd24</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2496973007</pqid></control><display><type>article</type><title>Quantifying mixing and available potential energy in vertically periodic simulations of stratified flows</title><source>Cambridge University Press Journals Complete</source><creator>Howland, Christopher J. ; Taylor, John R. ; Caulfield, C.P.</creator><creatorcontrib>Howland, Christopher J. ; Taylor, John R. ; Caulfield, C.P.</creatorcontrib><description>Turbulent mixing exerts a significant influence on many physical processes in the ocean. In a stably stratified Boussinesq fluid, this irreversible mixing describes the conversion of available potential energy (APE) to background potential energy (BPE). In some settings the APE framework is difficult to apply and approximate measures are used to estimate irreversible mixing. For example, numerical simulations of stratified turbulence often use triply periodic domains to increase computational efficiency. In this set-up, however, BPE is not uniquely defined and the method of Winters et al. (J. Fluid Mech., vol. 289, 1995, pp. 115–128) cannot be directly applied to calculate the APE. We propose a new technique to calculate APE in periodic domains with a mean stratification. By defining a control volume bounded by surfaces of constant buoyancy, we can construct an appropriate background buoyancy profile $b_\ast (z,t)$ and accurately quantify diapycnal mixing in such systems. This technique also permits the accurate calculation of a finite-amplitude local APE density in periodic domains. The evolution of APE is analysed in various turbulent stratified flow simulations. We show that the mean dissipation rate of buoyancy variance $\chi$ provides a good approximation to the mean diapycnal mixing rate, even in flows with significant variations in local stratification. When quantifying measures of mixing efficiency in transient flows, we find significant variation depending on whether laminar diffusion of a mean flow is included in the kinetic energy dissipation rate. We discuss how best to interpret these results in the context of quantifying diapycnal diffusivity in real oceanographic flows.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2020.979</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Approximation ; Boussinesq approximation ; Boussinesq equations ; Buoyancy ; Computational fluid dynamics ; Computer applications ; Domains ; Energy ; Energy dissipation ; Energy exchange ; Estimates ; Flow simulation ; Flow velocity ; Fluid flow ; JFM Papers ; Kinetic energy ; Mathematical analysis ; Potential energy ; Reynolds number ; Simulation ; Stratification ; Stratified flow ; Turbulence ; Turbulent flow ; Turbulent mixing ; Unsteady flow</subject><ispartof>Journal of fluid mechanics, 2021-03, Vol.914, Article A12</ispartof><rights>The Author(s), 2021. Published by Cambridge University Press</rights><rights>The Author(s), 2021. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-9d33c4cd873a98e79b2222ae506129db578c619003323ef94c5089e5dd0350163</citedby><cites>FETCH-LOGICAL-c410t-9d33c4cd873a98e79b2222ae506129db578c619003323ef94c5089e5dd0350163</cites><orcidid>0000-0003-3686-9253 ; 0000-0002-1292-3756 ; 0000-0002-3170-9480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112020009799/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Howland, Christopher J.</creatorcontrib><creatorcontrib>Taylor, John R.</creatorcontrib><creatorcontrib>Caulfield, C.P.</creatorcontrib><title>Quantifying mixing and available potential energy in vertically periodic simulations of stratified flows</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Turbulent mixing exerts a significant influence on many physical processes in the ocean. In a stably stratified Boussinesq fluid, this irreversible mixing describes the conversion of available potential energy (APE) to background potential energy (BPE). In some settings the APE framework is difficult to apply and approximate measures are used to estimate irreversible mixing. For example, numerical simulations of stratified turbulence often use triply periodic domains to increase computational efficiency. In this set-up, however, BPE is not uniquely defined and the method of Winters et al. (J. Fluid Mech., vol. 289, 1995, pp. 115–128) cannot be directly applied to calculate the APE. We propose a new technique to calculate APE in periodic domains with a mean stratification. By defining a control volume bounded by surfaces of constant buoyancy, we can construct an appropriate background buoyancy profile $b_\ast (z,t)$ and accurately quantify diapycnal mixing in such systems. This technique also permits the accurate calculation of a finite-amplitude local APE density in periodic domains. The evolution of APE is analysed in various turbulent stratified flow simulations. We show that the mean dissipation rate of buoyancy variance $\chi$ provides a good approximation to the mean diapycnal mixing rate, even in flows with significant variations in local stratification. When quantifying measures of mixing efficiency in transient flows, we find significant variation depending on whether laminar diffusion of a mean flow is included in the kinetic energy dissipation rate. We discuss how best to interpret these results in the context of quantifying diapycnal diffusivity in real oceanographic flows.</description><subject>Approximation</subject><subject>Boussinesq approximation</subject><subject>Boussinesq equations</subject><subject>Buoyancy</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Domains</subject><subject>Energy</subject><subject>Energy dissipation</subject><subject>Energy exchange</subject><subject>Estimates</subject><subject>Flow simulation</subject><subject>Flow velocity</subject><subject>Fluid flow</subject><subject>JFM Papers</subject><subject>Kinetic energy</subject><subject>Mathematical analysis</subject><subject>Potential energy</subject><subject>Reynolds number</subject><subject>Simulation</subject><subject>Stratification</subject><subject>Stratified flow</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Turbulent mixing</subject><subject>Unsteady flow</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkE1LxDAQhoMouK7e_AEBr7ZOkrZpjrL4BQsi6LmkTbJmST9M2tX-e7Psghfn8jLwzDvwIHRNICVA-N3WtCkFCqng4gQtSFaIhBdZfooWAJQmhFA4RxchbAEIA8EX6PNtkt1ozWy7DW7tzz5kp7DcSetk7TQe-lFHQjqsO-03M7Yd3mk_2kY6N-NBe9sr2-Bg28nJ0fZdwL3BYfRxMVYrbFz_HS7RmZEu6KtjLtHH48P76jlZvz69rO7XSZMRGBOhGGuyRpWcSVFqLmoaR-ocCkKFqnNeNgURAIxRpo3ImhxKoXOlgOVACrZEN4fewfdfkw5jte0n38WXFc1EITgD4JG6PVCN70Pw2lSDt630c0Wg2rusostq77KKLiOeHnHZ1t6qjf5r_ffgF4nHd24</recordid><startdate>20210305</startdate><enddate>20210305</enddate><creator>Howland, Christopher J.</creator><creator>Taylor, John R.</creator><creator>Caulfield, C.P.</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-3686-9253</orcidid><orcidid>https://orcid.org/0000-0002-1292-3756</orcidid><orcidid>https://orcid.org/0000-0002-3170-9480</orcidid></search><sort><creationdate>20210305</creationdate><title>Quantifying mixing and available potential energy in vertically periodic simulations of stratified flows</title><author>Howland, Christopher J. ; Taylor, John R. ; Caulfield, C.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-9d33c4cd873a98e79b2222ae506129db578c619003323ef94c5089e5dd0350163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Approximation</topic><topic>Boussinesq approximation</topic><topic>Boussinesq equations</topic><topic>Buoyancy</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Domains</topic><topic>Energy</topic><topic>Energy dissipation</topic><topic>Energy exchange</topic><topic>Estimates</topic><topic>Flow simulation</topic><topic>Flow velocity</topic><topic>Fluid flow</topic><topic>JFM Papers</topic><topic>Kinetic energy</topic><topic>Mathematical analysis</topic><topic>Potential energy</topic><topic>Reynolds number</topic><topic>Simulation</topic><topic>Stratification</topic><topic>Stratified flow</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Turbulent mixing</topic><topic>Unsteady flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Howland, Christopher J.</creatorcontrib><creatorcontrib>Taylor, John R.</creatorcontrib><creatorcontrib>Caulfield, C.P.</creatorcontrib><collection>Cambridge Journals Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Howland, Christopher J.</au><au>Taylor, John R.</au><au>Caulfield, C.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying mixing and available potential energy in vertically periodic simulations of stratified flows</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2021-03-05</date><risdate>2021</risdate><volume>914</volume><artnum>A12</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>Turbulent mixing exerts a significant influence on many physical processes in the ocean. In a stably stratified Boussinesq fluid, this irreversible mixing describes the conversion of available potential energy (APE) to background potential energy (BPE). In some settings the APE framework is difficult to apply and approximate measures are used to estimate irreversible mixing. For example, numerical simulations of stratified turbulence often use triply periodic domains to increase computational efficiency. In this set-up, however, BPE is not uniquely defined and the method of Winters et al. (J. Fluid Mech., vol. 289, 1995, pp. 115–128) cannot be directly applied to calculate the APE. We propose a new technique to calculate APE in periodic domains with a mean stratification. By defining a control volume bounded by surfaces of constant buoyancy, we can construct an appropriate background buoyancy profile $b_\ast (z,t)$ and accurately quantify diapycnal mixing in such systems. This technique also permits the accurate calculation of a finite-amplitude local APE density in periodic domains. The evolution of APE is analysed in various turbulent stratified flow simulations. We show that the mean dissipation rate of buoyancy variance $\chi$ provides a good approximation to the mean diapycnal mixing rate, even in flows with significant variations in local stratification. When quantifying measures of mixing efficiency in transient flows, we find significant variation depending on whether laminar diffusion of a mean flow is included in the kinetic energy dissipation rate. We discuss how best to interpret these results in the context of quantifying diapycnal diffusivity in real oceanographic flows.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2020.979</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0003-3686-9253</orcidid><orcidid>https://orcid.org/0000-0002-1292-3756</orcidid><orcidid>https://orcid.org/0000-0002-3170-9480</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2021-03, Vol.914, Article A12
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_2496973007
source Cambridge University Press Journals Complete
subjects Approximation
Boussinesq approximation
Boussinesq equations
Buoyancy
Computational fluid dynamics
Computer applications
Domains
Energy
Energy dissipation
Energy exchange
Estimates
Flow simulation
Flow velocity
Fluid flow
JFM Papers
Kinetic energy
Mathematical analysis
Potential energy
Reynolds number
Simulation
Stratification
Stratified flow
Turbulence
Turbulent flow
Turbulent mixing
Unsteady flow
title Quantifying mixing and available potential energy in vertically periodic simulations of stratified flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A08%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20mixing%20and%20available%20potential%20energy%20in%20vertically%20periodic%20simulations%20of%20stratified%20flows&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Howland,%20Christopher%20J.&rft.date=2021-03-05&rft.volume=914&rft.artnum=A12&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2020.979&rft_dat=%3Cproquest_cross%3E2496973007%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2496973007&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2020_979&rfr_iscdi=true