Determination of a physically correct fractional‐order model for electrolytic computer‐grade capacitors
Electrolytic computer‐grade capacitors (ECGCs) are vastly implemented in energy storage systems. However, their models are not accurate and simple as other kinds of capacitors. For example, ECGCs and supercapacitors share many characteristics but have some differences because of their physicochemica...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2021-04, Vol.44 (6), p.4366-4380 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4380 |
---|---|
container_issue | 6 |
container_start_page | 4366 |
container_title | Mathematical methods in the applied sciences |
container_volume | 44 |
creator | Cruz‐Duarte, Jorge M. Guía‐Calderón, Manuel Rosales‐García, J. Juan Correa, Rodrigo |
description | Electrolytic computer‐grade capacitors (ECGCs) are vastly implemented in energy storage systems. However, their models are not accurate and simple as other kinds of capacitors. For example, ECGCs and supercapacitors share many characteristics but have some differences because of their physicochemical properties, so it is wrong to assume their electrical behaviour is equivalent. In this work, we study the discharging response of ECGCs using four models obtained from fractional differential equations (FDEs) with integer initial conditions and causal fractional definitions, that is, Caputo and conformable operators. We also recall a correct procedure to achieve models from FDEs with physical consistency of units and avoiding additional and senseless constants. Thence, we perform a fitting procedure over an experimental dataset from six ECGCs via a hybrid solving procedure powered by the cuckoo search algorithm and interior‐point algorithm. Our results show that models based on the traditional ordinary differential equation give the worst description of discharge, while models containing the Mittag–Leffler function, with time to the power of fractional order as the argument, render the best description of ECGCs. |
doi_str_mv | 10.1002/mma.7037 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2496783777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2496783777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2937-5f21c12ae90511b3c3c0ea5daec8f29e47b8189fac850be2fa2852c60324cc023</originalsourceid><addsrcrecordid>eNp10E1OwzAQBWALgUQpSBzBEhs2KWMnqZNlVX6lVmxgbbkTG1KcOoxToew4AmfkJKSULavZfPP09Bg7FzARAPKqacxEQaoO2EhAWSYiU9NDNgKhIMmkyI7ZSYxrACiEkCP2dm07S029MV0dNjw4bnj72scajfc9x0BkseOODO6A8d-fX4EqS7wJlfXcBeLWD4SC77sah4-m3Q6Rg3shU1mOpjVYd4HiKTtyxkd79nfH7Pn25ml-nywe7x7ms0WCskxVkjspUEhjS8iFWKWYIliTV8Zi4WRpM7UqRFE6g0UOKyudkUUucQqpzBBBpmN2sc9tKbxvbez0Omxp6B61zMqpKlKl1KAu9wopxEjW6ZbqxlCvBejdlHqYUu-mHGiypx-1t_2_Ti-Xs1__A0Y5eQE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2496783777</pqid></control><display><type>article</type><title>Determination of a physically correct fractional‐order model for electrolytic computer‐grade capacitors</title><source>Access via Wiley Online Library</source><creator>Cruz‐Duarte, Jorge M. ; Guía‐Calderón, Manuel ; Rosales‐García, J. Juan ; Correa, Rodrigo</creator><creatorcontrib>Cruz‐Duarte, Jorge M. ; Guía‐Calderón, Manuel ; Rosales‐García, J. Juan ; Correa, Rodrigo</creatorcontrib><description>Electrolytic computer‐grade capacitors (ECGCs) are vastly implemented in energy storage systems. However, their models are not accurate and simple as other kinds of capacitors. For example, ECGCs and supercapacitors share many characteristics but have some differences because of their physicochemical properties, so it is wrong to assume their electrical behaviour is equivalent. In this work, we study the discharging response of ECGCs using four models obtained from fractional differential equations (FDEs) with integer initial conditions and causal fractional definitions, that is, Caputo and conformable operators. We also recall a correct procedure to achieve models from FDEs with physical consistency of units and avoiding additional and senseless constants. Thence, we perform a fitting procedure over an experimental dataset from six ECGCs via a hybrid solving procedure powered by the cuckoo search algorithm and interior‐point algorithm. Our results show that models based on the traditional ordinary differential equation give the worst description of discharge, while models containing the Mittag–Leffler function, with time to the power of fractional order as the argument, render the best description of ECGCs.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.7037</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>capacitor discharging ; Capacitors ; cuckoo search ; Differential equations ; Discharge ; electrolytic computer‐grade capacitor ; Energy storage ; fractional calculus ; fractional model ; Initial conditions ; Operators (mathematics) ; Ordinary differential equations ; parameter estimation ; Search algorithms ; Storage systems</subject><ispartof>Mathematical methods in the applied sciences, 2021-04, Vol.44 (6), p.4366-4380</ispartof><rights>2020 John Wiley & Sons, Ltd.</rights><rights>2021 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2937-5f21c12ae90511b3c3c0ea5daec8f29e47b8189fac850be2fa2852c60324cc023</citedby><cites>FETCH-LOGICAL-c2937-5f21c12ae90511b3c3c0ea5daec8f29e47b8189fac850be2fa2852c60324cc023</cites><orcidid>0000-0002-6507-1809 ; 0000-0003-4494-7864 ; 0000-0001-9399-2501 ; 0000-0002-1244-4165</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.7037$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.7037$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Cruz‐Duarte, Jorge M.</creatorcontrib><creatorcontrib>Guía‐Calderón, Manuel</creatorcontrib><creatorcontrib>Rosales‐García, J. Juan</creatorcontrib><creatorcontrib>Correa, Rodrigo</creatorcontrib><title>Determination of a physically correct fractional‐order model for electrolytic computer‐grade capacitors</title><title>Mathematical methods in the applied sciences</title><description>Electrolytic computer‐grade capacitors (ECGCs) are vastly implemented in energy storage systems. However, their models are not accurate and simple as other kinds of capacitors. For example, ECGCs and supercapacitors share many characteristics but have some differences because of their physicochemical properties, so it is wrong to assume their electrical behaviour is equivalent. In this work, we study the discharging response of ECGCs using four models obtained from fractional differential equations (FDEs) with integer initial conditions and causal fractional definitions, that is, Caputo and conformable operators. We also recall a correct procedure to achieve models from FDEs with physical consistency of units and avoiding additional and senseless constants. Thence, we perform a fitting procedure over an experimental dataset from six ECGCs via a hybrid solving procedure powered by the cuckoo search algorithm and interior‐point algorithm. Our results show that models based on the traditional ordinary differential equation give the worst description of discharge, while models containing the Mittag–Leffler function, with time to the power of fractional order as the argument, render the best description of ECGCs.</description><subject>capacitor discharging</subject><subject>Capacitors</subject><subject>cuckoo search</subject><subject>Differential equations</subject><subject>Discharge</subject><subject>electrolytic computer‐grade capacitor</subject><subject>Energy storage</subject><subject>fractional calculus</subject><subject>fractional model</subject><subject>Initial conditions</subject><subject>Operators (mathematics)</subject><subject>Ordinary differential equations</subject><subject>parameter estimation</subject><subject>Search algorithms</subject><subject>Storage systems</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp10E1OwzAQBWALgUQpSBzBEhs2KWMnqZNlVX6lVmxgbbkTG1KcOoxToew4AmfkJKSULavZfPP09Bg7FzARAPKqacxEQaoO2EhAWSYiU9NDNgKhIMmkyI7ZSYxrACiEkCP2dm07S029MV0dNjw4bnj72scajfc9x0BkseOODO6A8d-fX4EqS7wJlfXcBeLWD4SC77sah4-m3Q6Rg3shU1mOpjVYd4HiKTtyxkd79nfH7Pn25ml-nywe7x7ms0WCskxVkjspUEhjS8iFWKWYIliTV8Zi4WRpM7UqRFE6g0UOKyudkUUucQqpzBBBpmN2sc9tKbxvbez0Omxp6B61zMqpKlKl1KAu9wopxEjW6ZbqxlCvBejdlHqYUu-mHGiypx-1t_2_Ti-Xs1__A0Y5eQE</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Cruz‐Duarte, Jorge M.</creator><creator>Guía‐Calderón, Manuel</creator><creator>Rosales‐García, J. Juan</creator><creator>Correa, Rodrigo</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-6507-1809</orcidid><orcidid>https://orcid.org/0000-0003-4494-7864</orcidid><orcidid>https://orcid.org/0000-0001-9399-2501</orcidid><orcidid>https://orcid.org/0000-0002-1244-4165</orcidid></search><sort><creationdate>202104</creationdate><title>Determination of a physically correct fractional‐order model for electrolytic computer‐grade capacitors</title><author>Cruz‐Duarte, Jorge M. ; Guía‐Calderón, Manuel ; Rosales‐García, J. Juan ; Correa, Rodrigo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2937-5f21c12ae90511b3c3c0ea5daec8f29e47b8189fac850be2fa2852c60324cc023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>capacitor discharging</topic><topic>Capacitors</topic><topic>cuckoo search</topic><topic>Differential equations</topic><topic>Discharge</topic><topic>electrolytic computer‐grade capacitor</topic><topic>Energy storage</topic><topic>fractional calculus</topic><topic>fractional model</topic><topic>Initial conditions</topic><topic>Operators (mathematics)</topic><topic>Ordinary differential equations</topic><topic>parameter estimation</topic><topic>Search algorithms</topic><topic>Storage systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cruz‐Duarte, Jorge M.</creatorcontrib><creatorcontrib>Guía‐Calderón, Manuel</creatorcontrib><creatorcontrib>Rosales‐García, J. Juan</creatorcontrib><creatorcontrib>Correa, Rodrigo</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cruz‐Duarte, Jorge M.</au><au>Guía‐Calderón, Manuel</au><au>Rosales‐García, J. Juan</au><au>Correa, Rodrigo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of a physically correct fractional‐order model for electrolytic computer‐grade capacitors</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2021-04</date><risdate>2021</risdate><volume>44</volume><issue>6</issue><spage>4366</spage><epage>4380</epage><pages>4366-4380</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>Electrolytic computer‐grade capacitors (ECGCs) are vastly implemented in energy storage systems. However, their models are not accurate and simple as other kinds of capacitors. For example, ECGCs and supercapacitors share many characteristics but have some differences because of their physicochemical properties, so it is wrong to assume their electrical behaviour is equivalent. In this work, we study the discharging response of ECGCs using four models obtained from fractional differential equations (FDEs) with integer initial conditions and causal fractional definitions, that is, Caputo and conformable operators. We also recall a correct procedure to achieve models from FDEs with physical consistency of units and avoiding additional and senseless constants. Thence, we perform a fitting procedure over an experimental dataset from six ECGCs via a hybrid solving procedure powered by the cuckoo search algorithm and interior‐point algorithm. Our results show that models based on the traditional ordinary differential equation give the worst description of discharge, while models containing the Mittag–Leffler function, with time to the power of fractional order as the argument, render the best description of ECGCs.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.7037</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6507-1809</orcidid><orcidid>https://orcid.org/0000-0003-4494-7864</orcidid><orcidid>https://orcid.org/0000-0001-9399-2501</orcidid><orcidid>https://orcid.org/0000-0002-1244-4165</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2021-04, Vol.44 (6), p.4366-4380 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_2496783777 |
source | Access via Wiley Online Library |
subjects | capacitor discharging Capacitors cuckoo search Differential equations Discharge electrolytic computer‐grade capacitor Energy storage fractional calculus fractional model Initial conditions Operators (mathematics) Ordinary differential equations parameter estimation Search algorithms Storage systems |
title | Determination of a physically correct fractional‐order model for electrolytic computer‐grade capacitors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A39%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20a%20physically%20correct%20fractional%E2%80%90order%20model%20for%20electrolytic%20computer%E2%80%90grade%20capacitors&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Cruz%E2%80%90Duarte,%20Jorge%20M.&rft.date=2021-04&rft.volume=44&rft.issue=6&rft.spage=4366&rft.epage=4380&rft.pages=4366-4380&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.7037&rft_dat=%3Cproquest_cross%3E2496783777%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2496783777&rft_id=info:pmid/&rfr_iscdi=true |