Eigenmeasures and stochastic diagonalization of bilinear maps
A new stochastic approach is presented to understand general spectral type problems for (not necessarily linear) functions between topological spaces. In order to show its potential applications, we construct the theory for the case of bilinear forms acting in couples of a Banach space and its dual....
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2021-04, Vol.44 (6), p.5021-5039 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5039 |
---|---|
container_issue | 6 |
container_start_page | 5021 |
container_title | Mathematical methods in the applied sciences |
container_volume | 44 |
creator | Erdoğan, Ezgi Sánchez Pérez, Enrique A. |
description | A new stochastic approach is presented to understand general spectral type problems for (not necessarily linear) functions between topological spaces. In order to show its potential applications, we construct the theory for the case of bilinear forms acting in couples of a Banach space and its dual. Our method consists of using integral representations of bilinear maps that satisfy particular domination properties, which is shown to be equivalent to having a certain spectral structure. Thus, we develop a measure‐based technique for the characterization of bilinear operators having a spectral representation, introducing the notion of eigenmeasure, which will become the central tool of our formalism. Specific applications are provided for operators between finite and infinite dimensional linear spaces. |
doi_str_mv | 10.1002/mma.7085 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2496783123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2496783123</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2935-d3ddf031a1a39a78f831f55b98e604baf12891dcfa69b9a6bade375f1ffdbc443</originalsourceid><addsrcrecordid>eNp10E9LwzAYx_EgCs4p-BIKXrx05knSPzl4GGNTYcOLnsPTJpkZbTOTFpmv3s559fRcPvx4-BJyC3QGlLKHtsVZQcvsjEyASpmCKPJzMqFQ0FQwEJfkKsYdpbQEYBPyuHRb07UG4xBMTLDTSex9_YGxd3WiHW59h437xt75LvE2qVzjOoMhaXEfr8mFxSaam787Je-r5dviOV2_Pr0s5uu0ZpJnqeZaW8oBAbnEorQlB5tllSxNTkWFFlgpQdcWc1lJzCvUhheZBWt1VQvBp-TutLsP_nMwsVc7P4TxsaiYkHkx7jE-qvuTqoOPMRir9sG1GA4KqDrGUWMcdYwz0vREv1xjDv86tdnMf_0Pp9JmBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2496783123</pqid></control><display><type>article</type><title>Eigenmeasures and stochastic diagonalization of bilinear maps</title><source>Wiley Journals</source><creator>Erdoğan, Ezgi ; Sánchez Pérez, Enrique A.</creator><creatorcontrib>Erdoğan, Ezgi ; Sánchez Pérez, Enrique A.</creatorcontrib><description>A new stochastic approach is presented to understand general spectral type problems for (not necessarily linear) functions between topological spaces. In order to show its potential applications, we construct the theory for the case of bilinear forms acting in couples of a Banach space and its dual. Our method consists of using integral representations of bilinear maps that satisfy particular domination properties, which is shown to be equivalent to having a certain spectral structure. Thus, we develop a measure‐based technique for the characterization of bilinear operators having a spectral representation, introducing the notion of eigenmeasure, which will become the central tool of our formalism. Specific applications are provided for operators between finite and infinite dimensional linear spaces.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.7085</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Banach space ; Banach spaces ; eigenmeasure ; eigenvalue ; multilinear operators ; nonlinear spectral theory ; Operators (mathematics) ; Representations ; Spectra ; Vector spaces</subject><ispartof>Mathematical methods in the applied sciences, 2021-04, Vol.44 (6), p.5021-5039</ispartof><rights>2020 John Wiley & Sons, Ltd.</rights><rights>2021 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2935-d3ddf031a1a39a78f831f55b98e604baf12891dcfa69b9a6bade375f1ffdbc443</citedby><cites>FETCH-LOGICAL-c2935-d3ddf031a1a39a78f831f55b98e604baf12891dcfa69b9a6bade375f1ffdbc443</cites><orcidid>0000-0001-8854-3154 ; 0000-0002-0641-1930</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.7085$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.7085$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Erdoğan, Ezgi</creatorcontrib><creatorcontrib>Sánchez Pérez, Enrique A.</creatorcontrib><title>Eigenmeasures and stochastic diagonalization of bilinear maps</title><title>Mathematical methods in the applied sciences</title><description>A new stochastic approach is presented to understand general spectral type problems for (not necessarily linear) functions between topological spaces. In order to show its potential applications, we construct the theory for the case of bilinear forms acting in couples of a Banach space and its dual. Our method consists of using integral representations of bilinear maps that satisfy particular domination properties, which is shown to be equivalent to having a certain spectral structure. Thus, we develop a measure‐based technique for the characterization of bilinear operators having a spectral representation, introducing the notion of eigenmeasure, which will become the central tool of our formalism. Specific applications are provided for operators between finite and infinite dimensional linear spaces.</description><subject>Banach space</subject><subject>Banach spaces</subject><subject>eigenmeasure</subject><subject>eigenvalue</subject><subject>multilinear operators</subject><subject>nonlinear spectral theory</subject><subject>Operators (mathematics)</subject><subject>Representations</subject><subject>Spectra</subject><subject>Vector spaces</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp10E9LwzAYx_EgCs4p-BIKXrx05knSPzl4GGNTYcOLnsPTJpkZbTOTFpmv3s559fRcPvx4-BJyC3QGlLKHtsVZQcvsjEyASpmCKPJzMqFQ0FQwEJfkKsYdpbQEYBPyuHRb07UG4xBMTLDTSex9_YGxd3WiHW59h437xt75LvE2qVzjOoMhaXEfr8mFxSaam787Je-r5dviOV2_Pr0s5uu0ZpJnqeZaW8oBAbnEorQlB5tllSxNTkWFFlgpQdcWc1lJzCvUhheZBWt1VQvBp-TutLsP_nMwsVc7P4TxsaiYkHkx7jE-qvuTqoOPMRir9sG1GA4KqDrGUWMcdYwz0vREv1xjDv86tdnMf_0Pp9JmBw</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Erdoğan, Ezgi</creator><creator>Sánchez Pérez, Enrique A.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-8854-3154</orcidid><orcidid>https://orcid.org/0000-0002-0641-1930</orcidid></search><sort><creationdate>202104</creationdate><title>Eigenmeasures and stochastic diagonalization of bilinear maps</title><author>Erdoğan, Ezgi ; Sánchez Pérez, Enrique A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2935-d3ddf031a1a39a78f831f55b98e604baf12891dcfa69b9a6bade375f1ffdbc443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Banach space</topic><topic>Banach spaces</topic><topic>eigenmeasure</topic><topic>eigenvalue</topic><topic>multilinear operators</topic><topic>nonlinear spectral theory</topic><topic>Operators (mathematics)</topic><topic>Representations</topic><topic>Spectra</topic><topic>Vector spaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Erdoğan, Ezgi</creatorcontrib><creatorcontrib>Sánchez Pérez, Enrique A.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Erdoğan, Ezgi</au><au>Sánchez Pérez, Enrique A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eigenmeasures and stochastic diagonalization of bilinear maps</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2021-04</date><risdate>2021</risdate><volume>44</volume><issue>6</issue><spage>5021</spage><epage>5039</epage><pages>5021-5039</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>A new stochastic approach is presented to understand general spectral type problems for (not necessarily linear) functions between topological spaces. In order to show its potential applications, we construct the theory for the case of bilinear forms acting in couples of a Banach space and its dual. Our method consists of using integral representations of bilinear maps that satisfy particular domination properties, which is shown to be equivalent to having a certain spectral structure. Thus, we develop a measure‐based technique for the characterization of bilinear operators having a spectral representation, introducing the notion of eigenmeasure, which will become the central tool of our formalism. Specific applications are provided for operators between finite and infinite dimensional linear spaces.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.7085</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-8854-3154</orcidid><orcidid>https://orcid.org/0000-0002-0641-1930</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2021-04, Vol.44 (6), p.5021-5039 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_2496783123 |
source | Wiley Journals |
subjects | Banach space Banach spaces eigenmeasure eigenvalue multilinear operators nonlinear spectral theory Operators (mathematics) Representations Spectra Vector spaces |
title | Eigenmeasures and stochastic diagonalization of bilinear maps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A17%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eigenmeasures%20and%20stochastic%20diagonalization%20of%20bilinear%20maps&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Erdo%C4%9Fan,%20Ezgi&rft.date=2021-04&rft.volume=44&rft.issue=6&rft.spage=5021&rft.epage=5039&rft.pages=5021-5039&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.7085&rft_dat=%3Cproquest_cross%3E2496783123%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2496783123&rft_id=info:pmid/&rfr_iscdi=true |