Eigenmeasures and stochastic diagonalization of bilinear maps

A new stochastic approach is presented to understand general spectral type problems for (not necessarily linear) functions between topological spaces. In order to show its potential applications, we construct the theory for the case of bilinear forms acting in couples of a Banach space and its dual....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2021-04, Vol.44 (6), p.5021-5039
Hauptverfasser: Erdoğan, Ezgi, Sánchez Pérez, Enrique A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5039
container_issue 6
container_start_page 5021
container_title Mathematical methods in the applied sciences
container_volume 44
creator Erdoğan, Ezgi
Sánchez Pérez, Enrique A.
description A new stochastic approach is presented to understand general spectral type problems for (not necessarily linear) functions between topological spaces. In order to show its potential applications, we construct the theory for the case of bilinear forms acting in couples of a Banach space and its dual. Our method consists of using integral representations of bilinear maps that satisfy particular domination properties, which is shown to be equivalent to having a certain spectral structure. Thus, we develop a measure‐based technique for the characterization of bilinear operators having a spectral representation, introducing the notion of eigenmeasure, which will become the central tool of our formalism. Specific applications are provided for operators between finite and infinite dimensional linear spaces.
doi_str_mv 10.1002/mma.7085
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2496783123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2496783123</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2935-d3ddf031a1a39a78f831f55b98e604baf12891dcfa69b9a6bade375f1ffdbc443</originalsourceid><addsrcrecordid>eNp10E9LwzAYx_EgCs4p-BIKXrx05knSPzl4GGNTYcOLnsPTJpkZbTOTFpmv3s559fRcPvx4-BJyC3QGlLKHtsVZQcvsjEyASpmCKPJzMqFQ0FQwEJfkKsYdpbQEYBPyuHRb07UG4xBMTLDTSex9_YGxd3WiHW59h437xt75LvE2qVzjOoMhaXEfr8mFxSaam787Je-r5dviOV2_Pr0s5uu0ZpJnqeZaW8oBAbnEorQlB5tllSxNTkWFFlgpQdcWc1lJzCvUhheZBWt1VQvBp-TutLsP_nMwsVc7P4TxsaiYkHkx7jE-qvuTqoOPMRir9sG1GA4KqDrGUWMcdYwz0vREv1xjDv86tdnMf_0Pp9JmBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2496783123</pqid></control><display><type>article</type><title>Eigenmeasures and stochastic diagonalization of bilinear maps</title><source>Wiley Journals</source><creator>Erdoğan, Ezgi ; Sánchez Pérez, Enrique A.</creator><creatorcontrib>Erdoğan, Ezgi ; Sánchez Pérez, Enrique A.</creatorcontrib><description>A new stochastic approach is presented to understand general spectral type problems for (not necessarily linear) functions between topological spaces. In order to show its potential applications, we construct the theory for the case of bilinear forms acting in couples of a Banach space and its dual. Our method consists of using integral representations of bilinear maps that satisfy particular domination properties, which is shown to be equivalent to having a certain spectral structure. Thus, we develop a measure‐based technique for the characterization of bilinear operators having a spectral representation, introducing the notion of eigenmeasure, which will become the central tool of our formalism. Specific applications are provided for operators between finite and infinite dimensional linear spaces.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.7085</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Banach space ; Banach spaces ; eigenmeasure ; eigenvalue ; multilinear operators ; nonlinear spectral theory ; Operators (mathematics) ; Representations ; Spectra ; Vector spaces</subject><ispartof>Mathematical methods in the applied sciences, 2021-04, Vol.44 (6), p.5021-5039</ispartof><rights>2020 John Wiley &amp; Sons, Ltd.</rights><rights>2021 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2935-d3ddf031a1a39a78f831f55b98e604baf12891dcfa69b9a6bade375f1ffdbc443</citedby><cites>FETCH-LOGICAL-c2935-d3ddf031a1a39a78f831f55b98e604baf12891dcfa69b9a6bade375f1ffdbc443</cites><orcidid>0000-0001-8854-3154 ; 0000-0002-0641-1930</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.7085$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.7085$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Erdoğan, Ezgi</creatorcontrib><creatorcontrib>Sánchez Pérez, Enrique A.</creatorcontrib><title>Eigenmeasures and stochastic diagonalization of bilinear maps</title><title>Mathematical methods in the applied sciences</title><description>A new stochastic approach is presented to understand general spectral type problems for (not necessarily linear) functions between topological spaces. In order to show its potential applications, we construct the theory for the case of bilinear forms acting in couples of a Banach space and its dual. Our method consists of using integral representations of bilinear maps that satisfy particular domination properties, which is shown to be equivalent to having a certain spectral structure. Thus, we develop a measure‐based technique for the characterization of bilinear operators having a spectral representation, introducing the notion of eigenmeasure, which will become the central tool of our formalism. Specific applications are provided for operators between finite and infinite dimensional linear spaces.</description><subject>Banach space</subject><subject>Banach spaces</subject><subject>eigenmeasure</subject><subject>eigenvalue</subject><subject>multilinear operators</subject><subject>nonlinear spectral theory</subject><subject>Operators (mathematics)</subject><subject>Representations</subject><subject>Spectra</subject><subject>Vector spaces</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp10E9LwzAYx_EgCs4p-BIKXrx05knSPzl4GGNTYcOLnsPTJpkZbTOTFpmv3s559fRcPvx4-BJyC3QGlLKHtsVZQcvsjEyASpmCKPJzMqFQ0FQwEJfkKsYdpbQEYBPyuHRb07UG4xBMTLDTSex9_YGxd3WiHW59h437xt75LvE2qVzjOoMhaXEfr8mFxSaam787Je-r5dviOV2_Pr0s5uu0ZpJnqeZaW8oBAbnEorQlB5tllSxNTkWFFlgpQdcWc1lJzCvUhheZBWt1VQvBp-TutLsP_nMwsVc7P4TxsaiYkHkx7jE-qvuTqoOPMRir9sG1GA4KqDrGUWMcdYwz0vREv1xjDv86tdnMf_0Pp9JmBw</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Erdoğan, Ezgi</creator><creator>Sánchez Pérez, Enrique A.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-8854-3154</orcidid><orcidid>https://orcid.org/0000-0002-0641-1930</orcidid></search><sort><creationdate>202104</creationdate><title>Eigenmeasures and stochastic diagonalization of bilinear maps</title><author>Erdoğan, Ezgi ; Sánchez Pérez, Enrique A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2935-d3ddf031a1a39a78f831f55b98e604baf12891dcfa69b9a6bade375f1ffdbc443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Banach space</topic><topic>Banach spaces</topic><topic>eigenmeasure</topic><topic>eigenvalue</topic><topic>multilinear operators</topic><topic>nonlinear spectral theory</topic><topic>Operators (mathematics)</topic><topic>Representations</topic><topic>Spectra</topic><topic>Vector spaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Erdoğan, Ezgi</creatorcontrib><creatorcontrib>Sánchez Pérez, Enrique A.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Erdoğan, Ezgi</au><au>Sánchez Pérez, Enrique A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eigenmeasures and stochastic diagonalization of bilinear maps</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2021-04</date><risdate>2021</risdate><volume>44</volume><issue>6</issue><spage>5021</spage><epage>5039</epage><pages>5021-5039</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>A new stochastic approach is presented to understand general spectral type problems for (not necessarily linear) functions between topological spaces. In order to show its potential applications, we construct the theory for the case of bilinear forms acting in couples of a Banach space and its dual. Our method consists of using integral representations of bilinear maps that satisfy particular domination properties, which is shown to be equivalent to having a certain spectral structure. Thus, we develop a measure‐based technique for the characterization of bilinear operators having a spectral representation, introducing the notion of eigenmeasure, which will become the central tool of our formalism. Specific applications are provided for operators between finite and infinite dimensional linear spaces.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.7085</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-8854-3154</orcidid><orcidid>https://orcid.org/0000-0002-0641-1930</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2021-04, Vol.44 (6), p.5021-5039
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2496783123
source Wiley Journals
subjects Banach space
Banach spaces
eigenmeasure
eigenvalue
multilinear operators
nonlinear spectral theory
Operators (mathematics)
Representations
Spectra
Vector spaces
title Eigenmeasures and stochastic diagonalization of bilinear maps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A17%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eigenmeasures%20and%20stochastic%20diagonalization%20of%20bilinear%20maps&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Erdo%C4%9Fan,%20Ezgi&rft.date=2021-04&rft.volume=44&rft.issue=6&rft.spage=5021&rft.epage=5039&rft.pages=5021-5039&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.7085&rft_dat=%3Cproquest_cross%3E2496783123%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2496783123&rft_id=info:pmid/&rfr_iscdi=true