A note on approximate controllability of the Hilfer fractional neutral differential inclusions with infinite delay

In this study, we establish the approximate controllability of the Hilfer fractional neutral differential inclusions with infinite delay. The main result of this article is proven by applying some ideas of semigroup theory with fractional order and Dhage's fixed point theorem. Firstly, we prove...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2021-04, Vol.44 (6), p.4428-4447
Hauptverfasser: Kavitha, K., Vijayakumar, V., Udhayakumar, R., Sakthivel, N., Sooppy Nisar, Kottakkaran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4447
container_issue 6
container_start_page 4428
container_title Mathematical methods in the applied sciences
container_volume 44
creator Kavitha, K.
Vijayakumar, V.
Udhayakumar, R.
Sakthivel, N.
Sooppy Nisar, Kottakkaran
description In this study, we establish the approximate controllability of the Hilfer fractional neutral differential inclusions with infinite delay. The main result of this article is proven by applying some ideas of semigroup theory with fractional order and Dhage's fixed point theorem. Firstly, we prove the approximate controllability of the Hilfer fractional system. Next, we extend our study to the system with nonlocal conditions. Finally, theoretical and practical applications are presented to assist in the effectiveness of our discussion.
doi_str_mv 10.1002/mma.7040
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2496782824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2496782824</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2930-2fbb437fafaa93c6c81ec51f0f2bcc1326fefb67f969a47e8e664bafa8bef8f83</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKvgIwS8eNmaZGN291iKWqHFi55DNs3QlDSpSZa6b2-0Xj0NP_PxM_MhdEvJjBLCHvZ7NWsIJ2doQknXVZQ34hxNCG1IxRnll-gqpR0hpKWUTVCcYx-ywcFjdTjE8GX3qkQdfI7BOdVbZ_OIA-C8NXhpHZiIISqdbfDKYW-GHMvcWCgb47MtwXrthlSAhI82b0sG622p3Rinxmt0Acolc_M3p-jj-el9saxWby-vi_mq0qyrScWg73ndgAKluloL3VKjHykQYL3WtGYCDPSigU50ijemNULwvtBtb6CFtp6iu1NveetzMCnLXRhiOTpJxjvRtKxlvFD3J0rHkFI0IA-xOIijpET-GJXFqPwxWtDqhB6tM-O_nFyv57_8N4Kpers</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2496782824</pqid></control><display><type>article</type><title>A note on approximate controllability of the Hilfer fractional neutral differential inclusions with infinite delay</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kavitha, K. ; Vijayakumar, V. ; Udhayakumar, R. ; Sakthivel, N. ; Sooppy Nisar, Kottakkaran</creator><creatorcontrib>Kavitha, K. ; Vijayakumar, V. ; Udhayakumar, R. ; Sakthivel, N. ; Sooppy Nisar, Kottakkaran</creatorcontrib><description>In this study, we establish the approximate controllability of the Hilfer fractional neutral differential inclusions with infinite delay. The main result of this article is proven by applying some ideas of semigroup theory with fractional order and Dhage's fixed point theorem. Firstly, we prove the approximate controllability of the Hilfer fractional system. Next, we extend our study to the system with nonlocal conditions. Finally, theoretical and practical applications are presented to assist in the effectiveness of our discussion.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.7040</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>approximate controllability ; Controllability ; Fixed points (mathematics) ; Hilfer fractional system ; Inclusions ; multivalued map ; neutral system ; nonlocal conditions</subject><ispartof>Mathematical methods in the applied sciences, 2021-04, Vol.44 (6), p.4428-4447</ispartof><rights>2020 John Wiley &amp; Sons, Ltd.</rights><rights>2021 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2930-2fbb437fafaa93c6c81ec51f0f2bcc1326fefb67f969a47e8e664bafa8bef8f83</citedby><cites>FETCH-LOGICAL-c2930-2fbb437fafaa93c6c81ec51f0f2bcc1326fefb67f969a47e8e664bafa8bef8f83</cites><orcidid>0000-0002-7020-3466 ; 0000-0001-5976-5794 ; 0000-0001-5769-4320</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.7040$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.7040$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Kavitha, K.</creatorcontrib><creatorcontrib>Vijayakumar, V.</creatorcontrib><creatorcontrib>Udhayakumar, R.</creatorcontrib><creatorcontrib>Sakthivel, N.</creatorcontrib><creatorcontrib>Sooppy Nisar, Kottakkaran</creatorcontrib><title>A note on approximate controllability of the Hilfer fractional neutral differential inclusions with infinite delay</title><title>Mathematical methods in the applied sciences</title><description>In this study, we establish the approximate controllability of the Hilfer fractional neutral differential inclusions with infinite delay. The main result of this article is proven by applying some ideas of semigroup theory with fractional order and Dhage's fixed point theorem. Firstly, we prove the approximate controllability of the Hilfer fractional system. Next, we extend our study to the system with nonlocal conditions. Finally, theoretical and practical applications are presented to assist in the effectiveness of our discussion.</description><subject>approximate controllability</subject><subject>Controllability</subject><subject>Fixed points (mathematics)</subject><subject>Hilfer fractional system</subject><subject>Inclusions</subject><subject>multivalued map</subject><subject>neutral system</subject><subject>nonlocal conditions</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEQhoMoWKvgIwS8eNmaZGN291iKWqHFi55DNs3QlDSpSZa6b2-0Xj0NP_PxM_MhdEvJjBLCHvZ7NWsIJ2doQknXVZQ34hxNCG1IxRnll-gqpR0hpKWUTVCcYx-ywcFjdTjE8GX3qkQdfI7BOdVbZ_OIA-C8NXhpHZiIISqdbfDKYW-GHMvcWCgb47MtwXrthlSAhI82b0sG622p3Rinxmt0Acolc_M3p-jj-el9saxWby-vi_mq0qyrScWg73ndgAKluloL3VKjHykQYL3WtGYCDPSigU50ijemNULwvtBtb6CFtp6iu1NveetzMCnLXRhiOTpJxjvRtKxlvFD3J0rHkFI0IA-xOIijpET-GJXFqPwxWtDqhB6tM-O_nFyv57_8N4Kpers</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Kavitha, K.</creator><creator>Vijayakumar, V.</creator><creator>Udhayakumar, R.</creator><creator>Sakthivel, N.</creator><creator>Sooppy Nisar, Kottakkaran</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-7020-3466</orcidid><orcidid>https://orcid.org/0000-0001-5976-5794</orcidid><orcidid>https://orcid.org/0000-0001-5769-4320</orcidid></search><sort><creationdate>202104</creationdate><title>A note on approximate controllability of the Hilfer fractional neutral differential inclusions with infinite delay</title><author>Kavitha, K. ; Vijayakumar, V. ; Udhayakumar, R. ; Sakthivel, N. ; Sooppy Nisar, Kottakkaran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2930-2fbb437fafaa93c6c81ec51f0f2bcc1326fefb67f969a47e8e664bafa8bef8f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>approximate controllability</topic><topic>Controllability</topic><topic>Fixed points (mathematics)</topic><topic>Hilfer fractional system</topic><topic>Inclusions</topic><topic>multivalued map</topic><topic>neutral system</topic><topic>nonlocal conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kavitha, K.</creatorcontrib><creatorcontrib>Vijayakumar, V.</creatorcontrib><creatorcontrib>Udhayakumar, R.</creatorcontrib><creatorcontrib>Sakthivel, N.</creatorcontrib><creatorcontrib>Sooppy Nisar, Kottakkaran</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kavitha, K.</au><au>Vijayakumar, V.</au><au>Udhayakumar, R.</au><au>Sakthivel, N.</au><au>Sooppy Nisar, Kottakkaran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A note on approximate controllability of the Hilfer fractional neutral differential inclusions with infinite delay</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2021-04</date><risdate>2021</risdate><volume>44</volume><issue>6</issue><spage>4428</spage><epage>4447</epage><pages>4428-4447</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>In this study, we establish the approximate controllability of the Hilfer fractional neutral differential inclusions with infinite delay. The main result of this article is proven by applying some ideas of semigroup theory with fractional order and Dhage's fixed point theorem. Firstly, we prove the approximate controllability of the Hilfer fractional system. Next, we extend our study to the system with nonlocal conditions. Finally, theoretical and practical applications are presented to assist in the effectiveness of our discussion.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.7040</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-7020-3466</orcidid><orcidid>https://orcid.org/0000-0001-5976-5794</orcidid><orcidid>https://orcid.org/0000-0001-5769-4320</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2021-04, Vol.44 (6), p.4428-4447
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2496782824
source Wiley Online Library Journals Frontfile Complete
subjects approximate controllability
Controllability
Fixed points (mathematics)
Hilfer fractional system
Inclusions
multivalued map
neutral system
nonlocal conditions
title A note on approximate controllability of the Hilfer fractional neutral differential inclusions with infinite delay
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T14%3A11%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20note%20on%20approximate%20controllability%20of%20the%20Hilfer%20fractional%20neutral%20differential%20inclusions%20with%20infinite%20delay&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Kavitha,%20K.&rft.date=2021-04&rft.volume=44&rft.issue=6&rft.spage=4428&rft.epage=4447&rft.pages=4428-4447&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.7040&rft_dat=%3Cproquest_cross%3E2496782824%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2496782824&rft_id=info:pmid/&rfr_iscdi=true