A note on approximate controllability of the Hilfer fractional neutral differential inclusions with infinite delay
In this study, we establish the approximate controllability of the Hilfer fractional neutral differential inclusions with infinite delay. The main result of this article is proven by applying some ideas of semigroup theory with fractional order and Dhage's fixed point theorem. Firstly, we prove...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2021-04, Vol.44 (6), p.4428-4447 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4447 |
---|---|
container_issue | 6 |
container_start_page | 4428 |
container_title | Mathematical methods in the applied sciences |
container_volume | 44 |
creator | Kavitha, K. Vijayakumar, V. Udhayakumar, R. Sakthivel, N. Sooppy Nisar, Kottakkaran |
description | In this study, we establish the approximate controllability of the Hilfer fractional neutral differential inclusions with infinite delay. The main result of this article is proven by applying some ideas of semigroup theory with fractional order and Dhage's fixed point theorem. Firstly, we prove the approximate controllability of the Hilfer fractional system. Next, we extend our study to the system with nonlocal conditions. Finally, theoretical and practical applications are presented to assist in the effectiveness of our discussion. |
doi_str_mv | 10.1002/mma.7040 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2496782824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2496782824</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2930-2fbb437fafaa93c6c81ec51f0f2bcc1326fefb67f969a47e8e664bafa8bef8f83</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKvgIwS8eNmaZGN291iKWqHFi55DNs3QlDSpSZa6b2-0Xj0NP_PxM_MhdEvJjBLCHvZ7NWsIJ2doQknXVZQ34hxNCG1IxRnll-gqpR0hpKWUTVCcYx-ywcFjdTjE8GX3qkQdfI7BOdVbZ_OIA-C8NXhpHZiIISqdbfDKYW-GHMvcWCgb47MtwXrthlSAhI82b0sG622p3Rinxmt0Acolc_M3p-jj-el9saxWby-vi_mq0qyrScWg73ndgAKluloL3VKjHykQYL3WtGYCDPSigU50ijemNULwvtBtb6CFtp6iu1NveetzMCnLXRhiOTpJxjvRtKxlvFD3J0rHkFI0IA-xOIijpET-GJXFqPwxWtDqhB6tM-O_nFyv57_8N4Kpers</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2496782824</pqid></control><display><type>article</type><title>A note on approximate controllability of the Hilfer fractional neutral differential inclusions with infinite delay</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kavitha, K. ; Vijayakumar, V. ; Udhayakumar, R. ; Sakthivel, N. ; Sooppy Nisar, Kottakkaran</creator><creatorcontrib>Kavitha, K. ; Vijayakumar, V. ; Udhayakumar, R. ; Sakthivel, N. ; Sooppy Nisar, Kottakkaran</creatorcontrib><description>In this study, we establish the approximate controllability of the Hilfer fractional neutral differential inclusions with infinite delay. The main result of this article is proven by applying some ideas of semigroup theory with fractional order and Dhage's fixed point theorem. Firstly, we prove the approximate controllability of the Hilfer fractional system. Next, we extend our study to the system with nonlocal conditions. Finally, theoretical and practical applications are presented to assist in the effectiveness of our discussion.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.7040</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>approximate controllability ; Controllability ; Fixed points (mathematics) ; Hilfer fractional system ; Inclusions ; multivalued map ; neutral system ; nonlocal conditions</subject><ispartof>Mathematical methods in the applied sciences, 2021-04, Vol.44 (6), p.4428-4447</ispartof><rights>2020 John Wiley & Sons, Ltd.</rights><rights>2021 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2930-2fbb437fafaa93c6c81ec51f0f2bcc1326fefb67f969a47e8e664bafa8bef8f83</citedby><cites>FETCH-LOGICAL-c2930-2fbb437fafaa93c6c81ec51f0f2bcc1326fefb67f969a47e8e664bafa8bef8f83</cites><orcidid>0000-0002-7020-3466 ; 0000-0001-5976-5794 ; 0000-0001-5769-4320</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.7040$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.7040$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Kavitha, K.</creatorcontrib><creatorcontrib>Vijayakumar, V.</creatorcontrib><creatorcontrib>Udhayakumar, R.</creatorcontrib><creatorcontrib>Sakthivel, N.</creatorcontrib><creatorcontrib>Sooppy Nisar, Kottakkaran</creatorcontrib><title>A note on approximate controllability of the Hilfer fractional neutral differential inclusions with infinite delay</title><title>Mathematical methods in the applied sciences</title><description>In this study, we establish the approximate controllability of the Hilfer fractional neutral differential inclusions with infinite delay. The main result of this article is proven by applying some ideas of semigroup theory with fractional order and Dhage's fixed point theorem. Firstly, we prove the approximate controllability of the Hilfer fractional system. Next, we extend our study to the system with nonlocal conditions. Finally, theoretical and practical applications are presented to assist in the effectiveness of our discussion.</description><subject>approximate controllability</subject><subject>Controllability</subject><subject>Fixed points (mathematics)</subject><subject>Hilfer fractional system</subject><subject>Inclusions</subject><subject>multivalued map</subject><subject>neutral system</subject><subject>nonlocal conditions</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEQhoMoWKvgIwS8eNmaZGN291iKWqHFi55DNs3QlDSpSZa6b2-0Xj0NP_PxM_MhdEvJjBLCHvZ7NWsIJ2doQknXVZQ34hxNCG1IxRnll-gqpR0hpKWUTVCcYx-ywcFjdTjE8GX3qkQdfI7BOdVbZ_OIA-C8NXhpHZiIISqdbfDKYW-GHMvcWCgb47MtwXrthlSAhI82b0sG622p3Rinxmt0Acolc_M3p-jj-el9saxWby-vi_mq0qyrScWg73ndgAKluloL3VKjHykQYL3WtGYCDPSigU50ijemNULwvtBtb6CFtp6iu1NveetzMCnLXRhiOTpJxjvRtKxlvFD3J0rHkFI0IA-xOIijpET-GJXFqPwxWtDqhB6tM-O_nFyv57_8N4Kpers</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Kavitha, K.</creator><creator>Vijayakumar, V.</creator><creator>Udhayakumar, R.</creator><creator>Sakthivel, N.</creator><creator>Sooppy Nisar, Kottakkaran</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-7020-3466</orcidid><orcidid>https://orcid.org/0000-0001-5976-5794</orcidid><orcidid>https://orcid.org/0000-0001-5769-4320</orcidid></search><sort><creationdate>202104</creationdate><title>A note on approximate controllability of the Hilfer fractional neutral differential inclusions with infinite delay</title><author>Kavitha, K. ; Vijayakumar, V. ; Udhayakumar, R. ; Sakthivel, N. ; Sooppy Nisar, Kottakkaran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2930-2fbb437fafaa93c6c81ec51f0f2bcc1326fefb67f969a47e8e664bafa8bef8f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>approximate controllability</topic><topic>Controllability</topic><topic>Fixed points (mathematics)</topic><topic>Hilfer fractional system</topic><topic>Inclusions</topic><topic>multivalued map</topic><topic>neutral system</topic><topic>nonlocal conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kavitha, K.</creatorcontrib><creatorcontrib>Vijayakumar, V.</creatorcontrib><creatorcontrib>Udhayakumar, R.</creatorcontrib><creatorcontrib>Sakthivel, N.</creatorcontrib><creatorcontrib>Sooppy Nisar, Kottakkaran</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kavitha, K.</au><au>Vijayakumar, V.</au><au>Udhayakumar, R.</au><au>Sakthivel, N.</au><au>Sooppy Nisar, Kottakkaran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A note on approximate controllability of the Hilfer fractional neutral differential inclusions with infinite delay</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2021-04</date><risdate>2021</risdate><volume>44</volume><issue>6</issue><spage>4428</spage><epage>4447</epage><pages>4428-4447</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>In this study, we establish the approximate controllability of the Hilfer fractional neutral differential inclusions with infinite delay. The main result of this article is proven by applying some ideas of semigroup theory with fractional order and Dhage's fixed point theorem. Firstly, we prove the approximate controllability of the Hilfer fractional system. Next, we extend our study to the system with nonlocal conditions. Finally, theoretical and practical applications are presented to assist in the effectiveness of our discussion.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.7040</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-7020-3466</orcidid><orcidid>https://orcid.org/0000-0001-5976-5794</orcidid><orcidid>https://orcid.org/0000-0001-5769-4320</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2021-04, Vol.44 (6), p.4428-4447 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_2496782824 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | approximate controllability Controllability Fixed points (mathematics) Hilfer fractional system Inclusions multivalued map neutral system nonlocal conditions |
title | A note on approximate controllability of the Hilfer fractional neutral differential inclusions with infinite delay |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T14%3A11%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20note%20on%20approximate%20controllability%20of%20the%20Hilfer%20fractional%20neutral%20differential%20inclusions%20with%20infinite%20delay&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Kavitha,%20K.&rft.date=2021-04&rft.volume=44&rft.issue=6&rft.spage=4428&rft.epage=4447&rft.pages=4428-4447&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.7040&rft_dat=%3Cproquest_cross%3E2496782824%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2496782824&rft_id=info:pmid/&rfr_iscdi=true |