Fully Coupled Body Force–Engine Performance Methodology for Boundary Layer Ingestion

Because of their potential reductions of fuel consumption, disruptive propulsion concepts such as boundary layer ingestion have lately earned the attention of the aerospace community. Because of the increased level of interactions brought by the tight airframe–propulsor integration, an accurate asse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of propulsion and power 2021-03, Vol.37 (2), p.192-201
Hauptverfasser: López de Vega, Luis, Dufour, Guillaume, García Rosa, Nicolás
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 201
container_issue 2
container_start_page 192
container_title Journal of propulsion and power
container_volume 37
creator López de Vega, Luis
Dufour, Guillaume
García Rosa, Nicolás
description Because of their potential reductions of fuel consumption, disruptive propulsion concepts such as boundary layer ingestion have lately earned the attention of the aerospace community. Because of the increased level of interactions brought by the tight airframe–propulsor integration, an accurate assessment of this benefit requires a detailed study of the engine behavior from both an aerodynamics and an overall performance standpoint. In this context, this Paper presents a fully coupled methodology that integrates a zero-dimensional thermodynamic cycle analysis of the core and a three-dimensional body force representation of the fan stage into a single numerical computation. This approach allows the efficient simulation of fan–distortion interactions and engine overall performance in terms of accuracy vs computational cost tradeoff, making it well suited for conducting full aircraft–engine computational fluid dynamics calculations. The coupling is demonstrated in the assessment of boundary layer ingestion impacts on the small DGEN380 turbofan. Results provide a quantification of such impacts on fan efficiency, engine power demand, thrust specific fuel consumption, flow distortion transfer, and fan stage aeromechanical response, for different engine net thrust settings.
doi_str_mv 10.2514/1.B37743
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2496388761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2496388761</sourcerecordid><originalsourceid>FETCH-LOGICAL-a319t-f489c39fa08e967e452e54d2901eff300bcb0471b24676480298e942863228d73</originalsourceid><addsrcrecordid>eNplkM1KAzEUhYMoWKvgIwREcDM1f5OfpS2tFiq6ULchnUnqlGlSMzOL2fkOvqFPYmQEBVf3cvk4554DwDlGE5Jjdo0nUyoEowdghHNKMyoFP_yzH4OTptkihLnkYgReFl1d93AWun1tSzgNZQ8XIRb28_1j7jeVt_DRRhfizvjCwnvbvoYy1GHTw3RMfOdLE3u4Mr2NcOk3tmmr4E_BkTN1Y89-5hg8L-ZPs7ts9XC7nN2sMkOxajPHpCqocgZJq7iwLCc2ZyVRCFvnKELrYo2YwGvCuOBMIqISyIjklBBZCjoGF4PuPoa3LnnrbeiiT5aaMMWpTIlxoq4GqoihaaJ1eh-rXXpbY6S_W9NYD60l9HJATWXMr9g_7gvasmm4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2496388761</pqid></control><display><type>article</type><title>Fully Coupled Body Force–Engine Performance Methodology for Boundary Layer Ingestion</title><source>Alma/SFX Local Collection</source><creator>López de Vega, Luis ; Dufour, Guillaume ; García Rosa, Nicolás</creator><creatorcontrib>López de Vega, Luis ; Dufour, Guillaume ; García Rosa, Nicolás</creatorcontrib><description>Because of their potential reductions of fuel consumption, disruptive propulsion concepts such as boundary layer ingestion have lately earned the attention of the aerospace community. Because of the increased level of interactions brought by the tight airframe–propulsor integration, an accurate assessment of this benefit requires a detailed study of the engine behavior from both an aerodynamics and an overall performance standpoint. In this context, this Paper presents a fully coupled methodology that integrates a zero-dimensional thermodynamic cycle analysis of the core and a three-dimensional body force representation of the fan stage into a single numerical computation. This approach allows the efficient simulation of fan–distortion interactions and engine overall performance in terms of accuracy vs computational cost tradeoff, making it well suited for conducting full aircraft–engine computational fluid dynamics calculations. The coupling is demonstrated in the assessment of boundary layer ingestion impacts on the small DGEN380 turbofan. Results provide a quantification of such impacts on fan efficiency, engine power demand, thrust specific fuel consumption, flow distortion transfer, and fan stage aeromechanical response, for different engine net thrust settings.</description><identifier>ISSN: 1533-3876</identifier><identifier>ISSN: 0748-4658</identifier><identifier>EISSN: 1533-3876</identifier><identifier>DOI: 10.2514/1.B37743</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><subject>Aerodynamics ; Aerospace industry ; Airframes ; Boundary layers ; Computational fluid dynamics ; Computing costs ; Dimensional analysis ; Flow distortion ; Fuel consumption ; Ingestion ; Numerical analysis ; Power consumption ; Three dimensional bodies ; Thrust ; Turbofans</subject><ispartof>Journal of propulsion and power, 2021-03, Vol.37 (2), p.192-201</ispartof><rights>Copyright © 2020 by the authors. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at ; employ the eISSN to initiate your request. See also AIAA Rights and Permissions .</rights><rights>Copyright © 2020 by the authors. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3876 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a319t-f489c39fa08e967e452e54d2901eff300bcb0471b24676480298e942863228d73</citedby><cites>FETCH-LOGICAL-a319t-f489c39fa08e967e452e54d2901eff300bcb0471b24676480298e942863228d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>López de Vega, Luis</creatorcontrib><creatorcontrib>Dufour, Guillaume</creatorcontrib><creatorcontrib>García Rosa, Nicolás</creatorcontrib><title>Fully Coupled Body Force–Engine Performance Methodology for Boundary Layer Ingestion</title><title>Journal of propulsion and power</title><description>Because of their potential reductions of fuel consumption, disruptive propulsion concepts such as boundary layer ingestion have lately earned the attention of the aerospace community. Because of the increased level of interactions brought by the tight airframe–propulsor integration, an accurate assessment of this benefit requires a detailed study of the engine behavior from both an aerodynamics and an overall performance standpoint. In this context, this Paper presents a fully coupled methodology that integrates a zero-dimensional thermodynamic cycle analysis of the core and a three-dimensional body force representation of the fan stage into a single numerical computation. This approach allows the efficient simulation of fan–distortion interactions and engine overall performance in terms of accuracy vs computational cost tradeoff, making it well suited for conducting full aircraft–engine computational fluid dynamics calculations. The coupling is demonstrated in the assessment of boundary layer ingestion impacts on the small DGEN380 turbofan. Results provide a quantification of such impacts on fan efficiency, engine power demand, thrust specific fuel consumption, flow distortion transfer, and fan stage aeromechanical response, for different engine net thrust settings.</description><subject>Aerodynamics</subject><subject>Aerospace industry</subject><subject>Airframes</subject><subject>Boundary layers</subject><subject>Computational fluid dynamics</subject><subject>Computing costs</subject><subject>Dimensional analysis</subject><subject>Flow distortion</subject><subject>Fuel consumption</subject><subject>Ingestion</subject><subject>Numerical analysis</subject><subject>Power consumption</subject><subject>Three dimensional bodies</subject><subject>Thrust</subject><subject>Turbofans</subject><issn>1533-3876</issn><issn>0748-4658</issn><issn>1533-3876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNplkM1KAzEUhYMoWKvgIwREcDM1f5OfpS2tFiq6ULchnUnqlGlSMzOL2fkOvqFPYmQEBVf3cvk4554DwDlGE5Jjdo0nUyoEowdghHNKMyoFP_yzH4OTptkihLnkYgReFl1d93AWun1tSzgNZQ8XIRb28_1j7jeVt_DRRhfizvjCwnvbvoYy1GHTw3RMfOdLE3u4Mr2NcOk3tmmr4E_BkTN1Y89-5hg8L-ZPs7ts9XC7nN2sMkOxajPHpCqocgZJq7iwLCc2ZyVRCFvnKELrYo2YwGvCuOBMIqISyIjklBBZCjoGF4PuPoa3LnnrbeiiT5aaMMWpTIlxoq4GqoihaaJ1eh-rXXpbY6S_W9NYD60l9HJATWXMr9g_7gvasmm4</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>López de Vega, Luis</creator><creator>Dufour, Guillaume</creator><creator>García Rosa, Nicolás</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20210301</creationdate><title>Fully Coupled Body Force–Engine Performance Methodology for Boundary Layer Ingestion</title><author>López de Vega, Luis ; Dufour, Guillaume ; García Rosa, Nicolás</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a319t-f489c39fa08e967e452e54d2901eff300bcb0471b24676480298e942863228d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerodynamics</topic><topic>Aerospace industry</topic><topic>Airframes</topic><topic>Boundary layers</topic><topic>Computational fluid dynamics</topic><topic>Computing costs</topic><topic>Dimensional analysis</topic><topic>Flow distortion</topic><topic>Fuel consumption</topic><topic>Ingestion</topic><topic>Numerical analysis</topic><topic>Power consumption</topic><topic>Three dimensional bodies</topic><topic>Thrust</topic><topic>Turbofans</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>López de Vega, Luis</creatorcontrib><creatorcontrib>Dufour, Guillaume</creatorcontrib><creatorcontrib>García Rosa, Nicolás</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of propulsion and power</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>López de Vega, Luis</au><au>Dufour, Guillaume</au><au>García Rosa, Nicolás</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fully Coupled Body Force–Engine Performance Methodology for Boundary Layer Ingestion</atitle><jtitle>Journal of propulsion and power</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>37</volume><issue>2</issue><spage>192</spage><epage>201</epage><pages>192-201</pages><issn>1533-3876</issn><issn>0748-4658</issn><eissn>1533-3876</eissn><abstract>Because of their potential reductions of fuel consumption, disruptive propulsion concepts such as boundary layer ingestion have lately earned the attention of the aerospace community. Because of the increased level of interactions brought by the tight airframe–propulsor integration, an accurate assessment of this benefit requires a detailed study of the engine behavior from both an aerodynamics and an overall performance standpoint. In this context, this Paper presents a fully coupled methodology that integrates a zero-dimensional thermodynamic cycle analysis of the core and a three-dimensional body force representation of the fan stage into a single numerical computation. This approach allows the efficient simulation of fan–distortion interactions and engine overall performance in terms of accuracy vs computational cost tradeoff, making it well suited for conducting full aircraft–engine computational fluid dynamics calculations. The coupling is demonstrated in the assessment of boundary layer ingestion impacts on the small DGEN380 turbofan. Results provide a quantification of such impacts on fan efficiency, engine power demand, thrust specific fuel consumption, flow distortion transfer, and fan stage aeromechanical response, for different engine net thrust settings.</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.B37743</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1533-3876
ispartof Journal of propulsion and power, 2021-03, Vol.37 (2), p.192-201
issn 1533-3876
0748-4658
1533-3876
language eng
recordid cdi_proquest_journals_2496388761
source Alma/SFX Local Collection
subjects Aerodynamics
Aerospace industry
Airframes
Boundary layers
Computational fluid dynamics
Computing costs
Dimensional analysis
Flow distortion
Fuel consumption
Ingestion
Numerical analysis
Power consumption
Three dimensional bodies
Thrust
Turbofans
title Fully Coupled Body Force–Engine Performance Methodology for Boundary Layer Ingestion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A31%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fully%20Coupled%20Body%20Force%E2%80%93Engine%20Performance%20Methodology%20for%20Boundary%20Layer%20Ingestion&rft.jtitle=Journal%20of%20propulsion%20and%20power&rft.au=L%C3%B3pez%20de%20Vega,%20Luis&rft.date=2021-03-01&rft.volume=37&rft.issue=2&rft.spage=192&rft.epage=201&rft.pages=192-201&rft.issn=1533-3876&rft.eissn=1533-3876&rft_id=info:doi/10.2514/1.B37743&rft_dat=%3Cproquest_cross%3E2496388761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2496388761&rft_id=info:pmid/&rfr_iscdi=true