Graph neural network for 3D classification of ambiguities and optical crosstalk in scintillator-based neutrino detectors
Deep-learning tools are being used extensively in high energy physics and are becoming central in the reconstruction of neutrino interactions in particle detectors. In this work, we report on the performance of a graph neural network in assisting with particle set event reconstruction. The three-dim...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2021-02, Vol.103 (3), Article 032005 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Physical review. D |
container_volume | 103 |
creator | Alonso-Monsalve, Saúl Douqa, Dana Jesús-Valls, César Lux, Thorsten Pina-Otey, Sebastian Sánchez, Federico Sgalaberna, Davide Whitehead, Leigh H. |
description | Deep-learning tools are being used extensively in high energy physics and are becoming central in the reconstruction of neutrino interactions in particle detectors. In this work, we report on the performance of a graph neural network in assisting with particle set event reconstruction. The three-dimensional reconstruction of particle tracks produced in neutrino interactions can be subject to ambiguities due to high multiplicity signatures in the detector or leakage of signal between neighboring active detector volumes. Graph neural networks potentially have the capability of identifying all these features to boost the reconstruction performance. As an example case study, we tested a graph neural network, inspired by the graphsage algorithm, on a novel 3D-granular plastic-scintillator detector, that will be used to upgrade the near detector of the T2K experiment. The developed neural network has been trained and tested on diverse neutrino interaction samples, showing very promising results: the classification of particle track voxels produced in the detector can be done with efficiencies and purities of 94%–96% per event and most of the ambiguities can be identified and rejected, while being robust against systematic effects. |
doi_str_mv | 10.1103/PhysRevD.103.032005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2496357668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2496357668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-cc0844bd01a069559d6db988f89b6ebfdac4de3deaf47c6eb7f57ce929e6df0c3</originalsourceid><addsrcrecordid>eNo9UMtOwzAQtBBIVKVfwMUS55R1nDjxEbVQkCqBEJwjxw_qNo2L7QD9e1wKnGZ2djSrHYQuCUwJAXr9tNqHZ_0xn6ZhCjQHKE_QKC8qyAByfvrPCZyjSQhrSJQBrwgZoa-FF7sV7vXgRZcgfjq_wcZ5TOdYdiIEa6wU0boeO4PFtrVvg41WByx6hd0upm2HpXchRNFtsO1xkLaPtutEdD5rRdDqkB-97R1WOmqZ9HCBzozogp784hi93t2-zO6z5ePiYXazzCQt65hJCXVRtAqIAMbLkiumWl7XpuYt061RQhZKU6WFKSqZlMqUldQ855opA5KO0dUxd-fd-6BDbNZu8H062eQFZ7SsGKuTix5dP494bZqdt1vh9w2B5tBy89dycxiOLdNvqBx1hA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2496357668</pqid></control><display><type>article</type><title>Graph neural network for 3D classification of ambiguities and optical crosstalk in scintillator-based neutrino detectors</title><source>American Physical Society Journals</source><creator>Alonso-Monsalve, Saúl ; Douqa, Dana ; Jesús-Valls, César ; Lux, Thorsten ; Pina-Otey, Sebastian ; Sánchez, Federico ; Sgalaberna, Davide ; Whitehead, Leigh H.</creator><creatorcontrib>Alonso-Monsalve, Saúl ; Douqa, Dana ; Jesús-Valls, César ; Lux, Thorsten ; Pina-Otey, Sebastian ; Sánchez, Federico ; Sgalaberna, Davide ; Whitehead, Leigh H.</creatorcontrib><description>Deep-learning tools are being used extensively in high energy physics and are becoming central in the reconstruction of neutrino interactions in particle detectors. In this work, we report on the performance of a graph neural network in assisting with particle set event reconstruction. The three-dimensional reconstruction of particle tracks produced in neutrino interactions can be subject to ambiguities due to high multiplicity signatures in the detector or leakage of signal between neighboring active detector volumes. Graph neural networks potentially have the capability of identifying all these features to boost the reconstruction performance. As an example case study, we tested a graph neural network, inspired by the graphsage algorithm, on a novel 3D-granular plastic-scintillator detector, that will be used to upgrade the near detector of the T2K experiment. The developed neural network has been trained and tested on diverse neutrino interaction samples, showing very promising results: the classification of particle track voxels produced in the detector can be done with efficiencies and purities of 94%–96% per event and most of the ambiguities can be identified and rejected, while being robust against systematic effects.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.103.032005</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Algorithms ; Classification ; Crosstalk ; Experiments ; Graph neural networks ; Neural networks ; Neutrinos ; Particle physics ; Particle tracking ; Radiation counters ; Reconstruction ; Scintillation counters ; Sensors</subject><ispartof>Physical review. D, 2021-02, Vol.103 (3), Article 032005</ispartof><rights>Copyright American Physical Society Feb 1, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-cc0844bd01a069559d6db988f89b6ebfdac4de3deaf47c6eb7f57ce929e6df0c3</citedby><cites>FETCH-LOGICAL-c358t-cc0844bd01a069559d6db988f89b6ebfdac4de3deaf47c6eb7f57ce929e6df0c3</cites><orcidid>0000-0001-8245-7618 ; 0000-0001-6292-7889 ; 0000-0003-0320-3623 ; 0000-0001-6205-5013 ; 0000-0002-3327-2534 ; 0000-0002-9678-7121 ; 0000-0002-0154-2456 ; 0000-0002-7807-0856</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids></links><search><creatorcontrib>Alonso-Monsalve, Saúl</creatorcontrib><creatorcontrib>Douqa, Dana</creatorcontrib><creatorcontrib>Jesús-Valls, César</creatorcontrib><creatorcontrib>Lux, Thorsten</creatorcontrib><creatorcontrib>Pina-Otey, Sebastian</creatorcontrib><creatorcontrib>Sánchez, Federico</creatorcontrib><creatorcontrib>Sgalaberna, Davide</creatorcontrib><creatorcontrib>Whitehead, Leigh H.</creatorcontrib><title>Graph neural network for 3D classification of ambiguities and optical crosstalk in scintillator-based neutrino detectors</title><title>Physical review. D</title><description>Deep-learning tools are being used extensively in high energy physics and are becoming central in the reconstruction of neutrino interactions in particle detectors. In this work, we report on the performance of a graph neural network in assisting with particle set event reconstruction. The three-dimensional reconstruction of particle tracks produced in neutrino interactions can be subject to ambiguities due to high multiplicity signatures in the detector or leakage of signal between neighboring active detector volumes. Graph neural networks potentially have the capability of identifying all these features to boost the reconstruction performance. As an example case study, we tested a graph neural network, inspired by the graphsage algorithm, on a novel 3D-granular plastic-scintillator detector, that will be used to upgrade the near detector of the T2K experiment. The developed neural network has been trained and tested on diverse neutrino interaction samples, showing very promising results: the classification of particle track voxels produced in the detector can be done with efficiencies and purities of 94%–96% per event and most of the ambiguities can be identified and rejected, while being robust against systematic effects.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Crosstalk</subject><subject>Experiments</subject><subject>Graph neural networks</subject><subject>Neural networks</subject><subject>Neutrinos</subject><subject>Particle physics</subject><subject>Particle tracking</subject><subject>Radiation counters</subject><subject>Reconstruction</subject><subject>Scintillation counters</subject><subject>Sensors</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9UMtOwzAQtBBIVKVfwMUS55R1nDjxEbVQkCqBEJwjxw_qNo2L7QD9e1wKnGZ2djSrHYQuCUwJAXr9tNqHZ_0xn6ZhCjQHKE_QKC8qyAByfvrPCZyjSQhrSJQBrwgZoa-FF7sV7vXgRZcgfjq_wcZ5TOdYdiIEa6wU0boeO4PFtrVvg41WByx6hd0upm2HpXchRNFtsO1xkLaPtutEdD5rRdDqkB-97R1WOmqZ9HCBzozogp784hi93t2-zO6z5ePiYXazzCQt65hJCXVRtAqIAMbLkiumWl7XpuYt061RQhZKU6WFKSqZlMqUldQ855opA5KO0dUxd-fd-6BDbNZu8H062eQFZ7SsGKuTix5dP494bZqdt1vh9w2B5tBy89dycxiOLdNvqBx1hA</recordid><startdate>20210222</startdate><enddate>20210222</enddate><creator>Alonso-Monsalve, Saúl</creator><creator>Douqa, Dana</creator><creator>Jesús-Valls, César</creator><creator>Lux, Thorsten</creator><creator>Pina-Otey, Sebastian</creator><creator>Sánchez, Federico</creator><creator>Sgalaberna, Davide</creator><creator>Whitehead, Leigh H.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8245-7618</orcidid><orcidid>https://orcid.org/0000-0001-6292-7889</orcidid><orcidid>https://orcid.org/0000-0003-0320-3623</orcidid><orcidid>https://orcid.org/0000-0001-6205-5013</orcidid><orcidid>https://orcid.org/0000-0002-3327-2534</orcidid><orcidid>https://orcid.org/0000-0002-9678-7121</orcidid><orcidid>https://orcid.org/0000-0002-0154-2456</orcidid><orcidid>https://orcid.org/0000-0002-7807-0856</orcidid></search><sort><creationdate>20210222</creationdate><title>Graph neural network for 3D classification of ambiguities and optical crosstalk in scintillator-based neutrino detectors</title><author>Alonso-Monsalve, Saúl ; Douqa, Dana ; Jesús-Valls, César ; Lux, Thorsten ; Pina-Otey, Sebastian ; Sánchez, Federico ; Sgalaberna, Davide ; Whitehead, Leigh H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-cc0844bd01a069559d6db988f89b6ebfdac4de3deaf47c6eb7f57ce929e6df0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Crosstalk</topic><topic>Experiments</topic><topic>Graph neural networks</topic><topic>Neural networks</topic><topic>Neutrinos</topic><topic>Particle physics</topic><topic>Particle tracking</topic><topic>Radiation counters</topic><topic>Reconstruction</topic><topic>Scintillation counters</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alonso-Monsalve, Saúl</creatorcontrib><creatorcontrib>Douqa, Dana</creatorcontrib><creatorcontrib>Jesús-Valls, César</creatorcontrib><creatorcontrib>Lux, Thorsten</creatorcontrib><creatorcontrib>Pina-Otey, Sebastian</creatorcontrib><creatorcontrib>Sánchez, Federico</creatorcontrib><creatorcontrib>Sgalaberna, Davide</creatorcontrib><creatorcontrib>Whitehead, Leigh H.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alonso-Monsalve, Saúl</au><au>Douqa, Dana</au><au>Jesús-Valls, César</au><au>Lux, Thorsten</au><au>Pina-Otey, Sebastian</au><au>Sánchez, Federico</au><au>Sgalaberna, Davide</au><au>Whitehead, Leigh H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graph neural network for 3D classification of ambiguities and optical crosstalk in scintillator-based neutrino detectors</atitle><jtitle>Physical review. D</jtitle><date>2021-02-22</date><risdate>2021</risdate><volume>103</volume><issue>3</issue><artnum>032005</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>Deep-learning tools are being used extensively in high energy physics and are becoming central in the reconstruction of neutrino interactions in particle detectors. In this work, we report on the performance of a graph neural network in assisting with particle set event reconstruction. The three-dimensional reconstruction of particle tracks produced in neutrino interactions can be subject to ambiguities due to high multiplicity signatures in the detector or leakage of signal between neighboring active detector volumes. Graph neural networks potentially have the capability of identifying all these features to boost the reconstruction performance. As an example case study, we tested a graph neural network, inspired by the graphsage algorithm, on a novel 3D-granular plastic-scintillator detector, that will be used to upgrade the near detector of the T2K experiment. The developed neural network has been trained and tested on diverse neutrino interaction samples, showing very promising results: the classification of particle track voxels produced in the detector can be done with efficiencies and purities of 94%–96% per event and most of the ambiguities can be identified and rejected, while being robust against systematic effects.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.103.032005</doi><orcidid>https://orcid.org/0000-0001-8245-7618</orcidid><orcidid>https://orcid.org/0000-0001-6292-7889</orcidid><orcidid>https://orcid.org/0000-0003-0320-3623</orcidid><orcidid>https://orcid.org/0000-0001-6205-5013</orcidid><orcidid>https://orcid.org/0000-0002-3327-2534</orcidid><orcidid>https://orcid.org/0000-0002-9678-7121</orcidid><orcidid>https://orcid.org/0000-0002-0154-2456</orcidid><orcidid>https://orcid.org/0000-0002-7807-0856</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0010 |
ispartof | Physical review. D, 2021-02, Vol.103 (3), Article 032005 |
issn | 2470-0010 2470-0029 |
language | eng |
recordid | cdi_proquest_journals_2496357668 |
source | American Physical Society Journals |
subjects | Algorithms Classification Crosstalk Experiments Graph neural networks Neural networks Neutrinos Particle physics Particle tracking Radiation counters Reconstruction Scintillation counters Sensors |
title | Graph neural network for 3D classification of ambiguities and optical crosstalk in scintillator-based neutrino detectors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T11%3A24%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graph%20neural%20network%20for%203D%20classification%20of%20ambiguities%20and%20optical%20crosstalk%20in%20scintillator-based%20neutrino%20detectors&rft.jtitle=Physical%20review.%20D&rft.au=Alonso-Monsalve,%20Sa%C3%BAl&rft.date=2021-02-22&rft.volume=103&rft.issue=3&rft.artnum=032005&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.103.032005&rft_dat=%3Cproquest_cross%3E2496357668%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2496357668&rft_id=info:pmid/&rfr_iscdi=true |