Graph neural network for 3D classification of ambiguities and optical crosstalk in scintillator-based neutrino detectors

Deep-learning tools are being used extensively in high energy physics and are becoming central in the reconstruction of neutrino interactions in particle detectors. In this work, we report on the performance of a graph neural network in assisting with particle set event reconstruction. The three-dim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2021-02, Vol.103 (3), Article 032005
Hauptverfasser: Alonso-Monsalve, Saúl, Douqa, Dana, Jesús-Valls, César, Lux, Thorsten, Pina-Otey, Sebastian, Sánchez, Federico, Sgalaberna, Davide, Whitehead, Leigh H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Physical review. D
container_volume 103
creator Alonso-Monsalve, Saúl
Douqa, Dana
Jesús-Valls, César
Lux, Thorsten
Pina-Otey, Sebastian
Sánchez, Federico
Sgalaberna, Davide
Whitehead, Leigh H.
description Deep-learning tools are being used extensively in high energy physics and are becoming central in the reconstruction of neutrino interactions in particle detectors. In this work, we report on the performance of a graph neural network in assisting with particle set event reconstruction. The three-dimensional reconstruction of particle tracks produced in neutrino interactions can be subject to ambiguities due to high multiplicity signatures in the detector or leakage of signal between neighboring active detector volumes. Graph neural networks potentially have the capability of identifying all these features to boost the reconstruction performance. As an example case study, we tested a graph neural network, inspired by the graphsage algorithm, on a novel 3D-granular plastic-scintillator detector, that will be used to upgrade the near detector of the T2K experiment. The developed neural network has been trained and tested on diverse neutrino interaction samples, showing very promising results: the classification of particle track voxels produced in the detector can be done with efficiencies and purities of 94%–96% per event and most of the ambiguities can be identified and rejected, while being robust against systematic effects.
doi_str_mv 10.1103/PhysRevD.103.032005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2496357668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2496357668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-cc0844bd01a069559d6db988f89b6ebfdac4de3deaf47c6eb7f57ce929e6df0c3</originalsourceid><addsrcrecordid>eNo9UMtOwzAQtBBIVKVfwMUS55R1nDjxEbVQkCqBEJwjxw_qNo2L7QD9e1wKnGZ2djSrHYQuCUwJAXr9tNqHZ_0xn6ZhCjQHKE_QKC8qyAByfvrPCZyjSQhrSJQBrwgZoa-FF7sV7vXgRZcgfjq_wcZ5TOdYdiIEa6wU0boeO4PFtrVvg41WByx6hd0upm2HpXchRNFtsO1xkLaPtutEdD5rRdDqkB-97R1WOmqZ9HCBzozogp784hi93t2-zO6z5ePiYXazzCQt65hJCXVRtAqIAMbLkiumWl7XpuYt061RQhZKU6WFKSqZlMqUldQ855opA5KO0dUxd-fd-6BDbNZu8H062eQFZ7SsGKuTix5dP494bZqdt1vh9w2B5tBy89dycxiOLdNvqBx1hA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2496357668</pqid></control><display><type>article</type><title>Graph neural network for 3D classification of ambiguities and optical crosstalk in scintillator-based neutrino detectors</title><source>American Physical Society Journals</source><creator>Alonso-Monsalve, Saúl ; Douqa, Dana ; Jesús-Valls, César ; Lux, Thorsten ; Pina-Otey, Sebastian ; Sánchez, Federico ; Sgalaberna, Davide ; Whitehead, Leigh H.</creator><creatorcontrib>Alonso-Monsalve, Saúl ; Douqa, Dana ; Jesús-Valls, César ; Lux, Thorsten ; Pina-Otey, Sebastian ; Sánchez, Federico ; Sgalaberna, Davide ; Whitehead, Leigh H.</creatorcontrib><description>Deep-learning tools are being used extensively in high energy physics and are becoming central in the reconstruction of neutrino interactions in particle detectors. In this work, we report on the performance of a graph neural network in assisting with particle set event reconstruction. The three-dimensional reconstruction of particle tracks produced in neutrino interactions can be subject to ambiguities due to high multiplicity signatures in the detector or leakage of signal between neighboring active detector volumes. Graph neural networks potentially have the capability of identifying all these features to boost the reconstruction performance. As an example case study, we tested a graph neural network, inspired by the graphsage algorithm, on a novel 3D-granular plastic-scintillator detector, that will be used to upgrade the near detector of the T2K experiment. The developed neural network has been trained and tested on diverse neutrino interaction samples, showing very promising results: the classification of particle track voxels produced in the detector can be done with efficiencies and purities of 94%–96% per event and most of the ambiguities can be identified and rejected, while being robust against systematic effects.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.103.032005</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Algorithms ; Classification ; Crosstalk ; Experiments ; Graph neural networks ; Neural networks ; Neutrinos ; Particle physics ; Particle tracking ; Radiation counters ; Reconstruction ; Scintillation counters ; Sensors</subject><ispartof>Physical review. D, 2021-02, Vol.103 (3), Article 032005</ispartof><rights>Copyright American Physical Society Feb 1, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-cc0844bd01a069559d6db988f89b6ebfdac4de3deaf47c6eb7f57ce929e6df0c3</citedby><cites>FETCH-LOGICAL-c358t-cc0844bd01a069559d6db988f89b6ebfdac4de3deaf47c6eb7f57ce929e6df0c3</cites><orcidid>0000-0001-8245-7618 ; 0000-0001-6292-7889 ; 0000-0003-0320-3623 ; 0000-0001-6205-5013 ; 0000-0002-3327-2534 ; 0000-0002-9678-7121 ; 0000-0002-0154-2456 ; 0000-0002-7807-0856</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids></links><search><creatorcontrib>Alonso-Monsalve, Saúl</creatorcontrib><creatorcontrib>Douqa, Dana</creatorcontrib><creatorcontrib>Jesús-Valls, César</creatorcontrib><creatorcontrib>Lux, Thorsten</creatorcontrib><creatorcontrib>Pina-Otey, Sebastian</creatorcontrib><creatorcontrib>Sánchez, Federico</creatorcontrib><creatorcontrib>Sgalaberna, Davide</creatorcontrib><creatorcontrib>Whitehead, Leigh H.</creatorcontrib><title>Graph neural network for 3D classification of ambiguities and optical crosstalk in scintillator-based neutrino detectors</title><title>Physical review. D</title><description>Deep-learning tools are being used extensively in high energy physics and are becoming central in the reconstruction of neutrino interactions in particle detectors. In this work, we report on the performance of a graph neural network in assisting with particle set event reconstruction. The three-dimensional reconstruction of particle tracks produced in neutrino interactions can be subject to ambiguities due to high multiplicity signatures in the detector or leakage of signal between neighboring active detector volumes. Graph neural networks potentially have the capability of identifying all these features to boost the reconstruction performance. As an example case study, we tested a graph neural network, inspired by the graphsage algorithm, on a novel 3D-granular plastic-scintillator detector, that will be used to upgrade the near detector of the T2K experiment. The developed neural network has been trained and tested on diverse neutrino interaction samples, showing very promising results: the classification of particle track voxels produced in the detector can be done with efficiencies and purities of 94%–96% per event and most of the ambiguities can be identified and rejected, while being robust against systematic effects.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Crosstalk</subject><subject>Experiments</subject><subject>Graph neural networks</subject><subject>Neural networks</subject><subject>Neutrinos</subject><subject>Particle physics</subject><subject>Particle tracking</subject><subject>Radiation counters</subject><subject>Reconstruction</subject><subject>Scintillation counters</subject><subject>Sensors</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9UMtOwzAQtBBIVKVfwMUS55R1nDjxEbVQkCqBEJwjxw_qNo2L7QD9e1wKnGZ2djSrHYQuCUwJAXr9tNqHZ_0xn6ZhCjQHKE_QKC8qyAByfvrPCZyjSQhrSJQBrwgZoa-FF7sV7vXgRZcgfjq_wcZ5TOdYdiIEa6wU0boeO4PFtrVvg41WByx6hd0upm2HpXchRNFtsO1xkLaPtutEdD5rRdDqkB-97R1WOmqZ9HCBzozogp784hi93t2-zO6z5ePiYXazzCQt65hJCXVRtAqIAMbLkiumWl7XpuYt061RQhZKU6WFKSqZlMqUldQ855opA5KO0dUxd-fd-6BDbNZu8H062eQFZ7SsGKuTix5dP494bZqdt1vh9w2B5tBy89dycxiOLdNvqBx1hA</recordid><startdate>20210222</startdate><enddate>20210222</enddate><creator>Alonso-Monsalve, Saúl</creator><creator>Douqa, Dana</creator><creator>Jesús-Valls, César</creator><creator>Lux, Thorsten</creator><creator>Pina-Otey, Sebastian</creator><creator>Sánchez, Federico</creator><creator>Sgalaberna, Davide</creator><creator>Whitehead, Leigh H.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8245-7618</orcidid><orcidid>https://orcid.org/0000-0001-6292-7889</orcidid><orcidid>https://orcid.org/0000-0003-0320-3623</orcidid><orcidid>https://orcid.org/0000-0001-6205-5013</orcidid><orcidid>https://orcid.org/0000-0002-3327-2534</orcidid><orcidid>https://orcid.org/0000-0002-9678-7121</orcidid><orcidid>https://orcid.org/0000-0002-0154-2456</orcidid><orcidid>https://orcid.org/0000-0002-7807-0856</orcidid></search><sort><creationdate>20210222</creationdate><title>Graph neural network for 3D classification of ambiguities and optical crosstalk in scintillator-based neutrino detectors</title><author>Alonso-Monsalve, Saúl ; Douqa, Dana ; Jesús-Valls, César ; Lux, Thorsten ; Pina-Otey, Sebastian ; Sánchez, Federico ; Sgalaberna, Davide ; Whitehead, Leigh H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-cc0844bd01a069559d6db988f89b6ebfdac4de3deaf47c6eb7f57ce929e6df0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Crosstalk</topic><topic>Experiments</topic><topic>Graph neural networks</topic><topic>Neural networks</topic><topic>Neutrinos</topic><topic>Particle physics</topic><topic>Particle tracking</topic><topic>Radiation counters</topic><topic>Reconstruction</topic><topic>Scintillation counters</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alonso-Monsalve, Saúl</creatorcontrib><creatorcontrib>Douqa, Dana</creatorcontrib><creatorcontrib>Jesús-Valls, César</creatorcontrib><creatorcontrib>Lux, Thorsten</creatorcontrib><creatorcontrib>Pina-Otey, Sebastian</creatorcontrib><creatorcontrib>Sánchez, Federico</creatorcontrib><creatorcontrib>Sgalaberna, Davide</creatorcontrib><creatorcontrib>Whitehead, Leigh H.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alonso-Monsalve, Saúl</au><au>Douqa, Dana</au><au>Jesús-Valls, César</au><au>Lux, Thorsten</au><au>Pina-Otey, Sebastian</au><au>Sánchez, Federico</au><au>Sgalaberna, Davide</au><au>Whitehead, Leigh H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graph neural network for 3D classification of ambiguities and optical crosstalk in scintillator-based neutrino detectors</atitle><jtitle>Physical review. D</jtitle><date>2021-02-22</date><risdate>2021</risdate><volume>103</volume><issue>3</issue><artnum>032005</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>Deep-learning tools are being used extensively in high energy physics and are becoming central in the reconstruction of neutrino interactions in particle detectors. In this work, we report on the performance of a graph neural network in assisting with particle set event reconstruction. The three-dimensional reconstruction of particle tracks produced in neutrino interactions can be subject to ambiguities due to high multiplicity signatures in the detector or leakage of signal between neighboring active detector volumes. Graph neural networks potentially have the capability of identifying all these features to boost the reconstruction performance. As an example case study, we tested a graph neural network, inspired by the graphsage algorithm, on a novel 3D-granular plastic-scintillator detector, that will be used to upgrade the near detector of the T2K experiment. The developed neural network has been trained and tested on diverse neutrino interaction samples, showing very promising results: the classification of particle track voxels produced in the detector can be done with efficiencies and purities of 94%–96% per event and most of the ambiguities can be identified and rejected, while being robust against systematic effects.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.103.032005</doi><orcidid>https://orcid.org/0000-0001-8245-7618</orcidid><orcidid>https://orcid.org/0000-0001-6292-7889</orcidid><orcidid>https://orcid.org/0000-0003-0320-3623</orcidid><orcidid>https://orcid.org/0000-0001-6205-5013</orcidid><orcidid>https://orcid.org/0000-0002-3327-2534</orcidid><orcidid>https://orcid.org/0000-0002-9678-7121</orcidid><orcidid>https://orcid.org/0000-0002-0154-2456</orcidid><orcidid>https://orcid.org/0000-0002-7807-0856</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2021-02, Vol.103 (3), Article 032005
issn 2470-0010
2470-0029
language eng
recordid cdi_proquest_journals_2496357668
source American Physical Society Journals
subjects Algorithms
Classification
Crosstalk
Experiments
Graph neural networks
Neural networks
Neutrinos
Particle physics
Particle tracking
Radiation counters
Reconstruction
Scintillation counters
Sensors
title Graph neural network for 3D classification of ambiguities and optical crosstalk in scintillator-based neutrino detectors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T11%3A24%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graph%20neural%20network%20for%203D%20classification%20of%20ambiguities%20and%20optical%20crosstalk%20in%20scintillator-based%20neutrino%20detectors&rft.jtitle=Physical%20review.%20D&rft.au=Alonso-Monsalve,%20Sa%C3%BAl&rft.date=2021-02-22&rft.volume=103&rft.issue=3&rft.artnum=032005&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.103.032005&rft_dat=%3Cproquest_cross%3E2496357668%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2496357668&rft_id=info:pmid/&rfr_iscdi=true