Advances in Transparent Planar Optics: Enabling Large Aperture, Ultrathin Lenses
Unlike electronics, optics do not follow Moore's law. This statement, expressed by Microsoft's Bernard Kress, refers to the hard challenges to solve in augmented reality hardware. While light sources have undergone numerous revolutions from candles to light emitting diodes, the evolution i...
Gespeichert in:
Veröffentlicht in: | Advanced optical materials 2021-03, Vol.9 (5), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Advanced optical materials |
container_volume | 9 |
creator | Tabiryan, Nelson V. Roberts, David E. Liao, Zhi Hwang, Jeoung‐Yeon Moran, Mark Ouskova, Olena Pshenichnyi, Andrii Sigley, Justin Tabirian, Anna Vergara, Rafael De Sio, Luciano Kimball, Brian R. Steeves, Diane M. Slagle, Jonathan McConney, Michael E. Bunning, Timothy J. |
description | Unlike electronics, optics do not follow Moore's law. This statement, expressed by Microsoft's Bernard Kress, refers to the hard challenges to solve in augmented reality hardware. While light sources have undergone numerous revolutions from candles to light emitting diodes, the evolution in transparent optics has been much slower. For transparent materials, variation of the shape, bulk refractive index, and/or its distribution leads to control of the transmitted beam in an optical system. An alternative, the control of the optical axis orientation in an anisotropic material in transparent micrometer‐thin films on a variety of substrates, is explored here. In contrast to metamaterials, these diffractive waveplates have a continuous structure allowing multilayer/multifunctional planar optical systems with close to 100% efficiency across broad bands of wavelengths (ultraviolet to infrared) with customizable spectra. The low‐cost and fast fabrication technology of this fourth generation of optics is scalable to very large aperture sizes. In addition to wearable adaptive optics, the technology enables thin and compact non‐mechanical fast beam steering systems for light detection and ultralight space telescopes. This review will first serve as an introduction to these unique transparent, planar optical films, and then recent advances enabled by specific optical designs will be presented.
This review presents an introduction and recent advances in so‐called fourth generation optics, which use geometric phase control to enable novel optical effects. As an alternative to metasurfaces, these diffractive waveplates have a continuous structure allowing multilayer/multifunctional planar optical systems with close to 100% efficiency across a broad band of wavelengths (UV to infrared) with customizable spectra. |
doi_str_mv | 10.1002/adom.202001692 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2496095190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2496095190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3832-8993834475e53fb795d40fbe5c07c26e0dfc189feff46b15bfb1dc509a668ef13</originalsourceid><addsrcrecordid>eNqFkD1PwzAURS0EElXpymyJlZRnJ05itqiUDymoHdrZcpLnkip1gp2C-u9JVQRsTPcN59wnXUKuGUwZAL_TVbubcuAALJb8jIw4kyJgkLDzP_clmXi_hQGCJJRRMiLLrPrQtkRPa0tXTlvfaYe2p8tGW-3oouvr0t_TudVFU9sNzbXbIM06dP3e4S1dN73T_dtg52g9-ityYXTjcfKdY7J-nK9mz0G-eHqZZXlQhmnIg1TKIaMoEShCUyRSVBGYAkUJScljhMqULJUGjYnigonCFKwqBUgdxykaFo7Jzam3c-37Hn2vtu3e2eGl4pGMQQomYaCmJ6p0rfcOjepcvdPuoBio43DqOJz6GW4Q5En4rBs8_EOr7GHx-ut-AeMjcUo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2496095190</pqid></control><display><type>article</type><title>Advances in Transparent Planar Optics: Enabling Large Aperture, Ultrathin Lenses</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tabiryan, Nelson V. ; Roberts, David E. ; Liao, Zhi ; Hwang, Jeoung‐Yeon ; Moran, Mark ; Ouskova, Olena ; Pshenichnyi, Andrii ; Sigley, Justin ; Tabirian, Anna ; Vergara, Rafael ; De Sio, Luciano ; Kimball, Brian R. ; Steeves, Diane M. ; Slagle, Jonathan ; McConney, Michael E. ; Bunning, Timothy J.</creator><creatorcontrib>Tabiryan, Nelson V. ; Roberts, David E. ; Liao, Zhi ; Hwang, Jeoung‐Yeon ; Moran, Mark ; Ouskova, Olena ; Pshenichnyi, Andrii ; Sigley, Justin ; Tabirian, Anna ; Vergara, Rafael ; De Sio, Luciano ; Kimball, Brian R. ; Steeves, Diane M. ; Slagle, Jonathan ; McConney, Michael E. ; Bunning, Timothy J.</creatorcontrib><description>Unlike electronics, optics do not follow Moore's law. This statement, expressed by Microsoft's Bernard Kress, refers to the hard challenges to solve in augmented reality hardware. While light sources have undergone numerous revolutions from candles to light emitting diodes, the evolution in transparent optics has been much slower. For transparent materials, variation of the shape, bulk refractive index, and/or its distribution leads to control of the transmitted beam in an optical system. An alternative, the control of the optical axis orientation in an anisotropic material in transparent micrometer‐thin films on a variety of substrates, is explored here. In contrast to metamaterials, these diffractive waveplates have a continuous structure allowing multilayer/multifunctional planar optical systems with close to 100% efficiency across broad bands of wavelengths (ultraviolet to infrared) with customizable spectra. The low‐cost and fast fabrication technology of this fourth generation of optics is scalable to very large aperture sizes. In addition to wearable adaptive optics, the technology enables thin and compact non‐mechanical fast beam steering systems for light detection and ultralight space telescopes. This review will first serve as an introduction to these unique transparent, planar optical films, and then recent advances enabled by specific optical designs will be presented.
This review presents an introduction and recent advances in so‐called fourth generation optics, which use geometric phase control to enable novel optical effects. As an alternative to metasurfaces, these diffractive waveplates have a continuous structure allowing multilayer/multifunctional planar optical systems with close to 100% efficiency across a broad band of wavelengths (UV to infrared) with customizable spectra.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202001692</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Adaptive optics ; Apertures ; Augmented reality ; Beam steering ; Candles ; diffractive waveplates ; geometrical phase ; Infrared spectra ; Light emitting diodes ; Light sources ; liquid crystal polymers ; liquid crystals ; Materials science ; Metamaterials ; Moore's law ; Multilayers ; Optics ; pellicle lenses ; photoalignment materials ; planar optics ; Refractivity ; Space telescopes ; Substrates ; switchable lenses ; Thin films</subject><ispartof>Advanced optical materials, 2021-03, Vol.9 (5), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3832-8993834475e53fb795d40fbe5c07c26e0dfc189feff46b15bfb1dc509a668ef13</citedby><cites>FETCH-LOGICAL-c3832-8993834475e53fb795d40fbe5c07c26e0dfc189feff46b15bfb1dc509a668ef13</cites><orcidid>0000-0002-2183-6910 ; 0000-0002-2866-6184 ; 0000-0002-6249-6836</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadom.202001692$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadom.202001692$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Tabiryan, Nelson V.</creatorcontrib><creatorcontrib>Roberts, David E.</creatorcontrib><creatorcontrib>Liao, Zhi</creatorcontrib><creatorcontrib>Hwang, Jeoung‐Yeon</creatorcontrib><creatorcontrib>Moran, Mark</creatorcontrib><creatorcontrib>Ouskova, Olena</creatorcontrib><creatorcontrib>Pshenichnyi, Andrii</creatorcontrib><creatorcontrib>Sigley, Justin</creatorcontrib><creatorcontrib>Tabirian, Anna</creatorcontrib><creatorcontrib>Vergara, Rafael</creatorcontrib><creatorcontrib>De Sio, Luciano</creatorcontrib><creatorcontrib>Kimball, Brian R.</creatorcontrib><creatorcontrib>Steeves, Diane M.</creatorcontrib><creatorcontrib>Slagle, Jonathan</creatorcontrib><creatorcontrib>McConney, Michael E.</creatorcontrib><creatorcontrib>Bunning, Timothy J.</creatorcontrib><title>Advances in Transparent Planar Optics: Enabling Large Aperture, Ultrathin Lenses</title><title>Advanced optical materials</title><description>Unlike electronics, optics do not follow Moore's law. This statement, expressed by Microsoft's Bernard Kress, refers to the hard challenges to solve in augmented reality hardware. While light sources have undergone numerous revolutions from candles to light emitting diodes, the evolution in transparent optics has been much slower. For transparent materials, variation of the shape, bulk refractive index, and/or its distribution leads to control of the transmitted beam in an optical system. An alternative, the control of the optical axis orientation in an anisotropic material in transparent micrometer‐thin films on a variety of substrates, is explored here. In contrast to metamaterials, these diffractive waveplates have a continuous structure allowing multilayer/multifunctional planar optical systems with close to 100% efficiency across broad bands of wavelengths (ultraviolet to infrared) with customizable spectra. The low‐cost and fast fabrication technology of this fourth generation of optics is scalable to very large aperture sizes. In addition to wearable adaptive optics, the technology enables thin and compact non‐mechanical fast beam steering systems for light detection and ultralight space telescopes. This review will first serve as an introduction to these unique transparent, planar optical films, and then recent advances enabled by specific optical designs will be presented.
This review presents an introduction and recent advances in so‐called fourth generation optics, which use geometric phase control to enable novel optical effects. As an alternative to metasurfaces, these diffractive waveplates have a continuous structure allowing multilayer/multifunctional planar optical systems with close to 100% efficiency across a broad band of wavelengths (UV to infrared) with customizable spectra.</description><subject>Adaptive optics</subject><subject>Apertures</subject><subject>Augmented reality</subject><subject>Beam steering</subject><subject>Candles</subject><subject>diffractive waveplates</subject><subject>geometrical phase</subject><subject>Infrared spectra</subject><subject>Light emitting diodes</subject><subject>Light sources</subject><subject>liquid crystal polymers</subject><subject>liquid crystals</subject><subject>Materials science</subject><subject>Metamaterials</subject><subject>Moore's law</subject><subject>Multilayers</subject><subject>Optics</subject><subject>pellicle lenses</subject><subject>photoalignment materials</subject><subject>planar optics</subject><subject>Refractivity</subject><subject>Space telescopes</subject><subject>Substrates</subject><subject>switchable lenses</subject><subject>Thin films</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAURS0EElXpymyJlZRnJ05itqiUDymoHdrZcpLnkip1gp2C-u9JVQRsTPcN59wnXUKuGUwZAL_TVbubcuAALJb8jIw4kyJgkLDzP_clmXi_hQGCJJRRMiLLrPrQtkRPa0tXTlvfaYe2p8tGW-3oouvr0t_TudVFU9sNzbXbIM06dP3e4S1dN73T_dtg52g9-ityYXTjcfKdY7J-nK9mz0G-eHqZZXlQhmnIg1TKIaMoEShCUyRSVBGYAkUJScljhMqULJUGjYnigonCFKwqBUgdxykaFo7Jzam3c-37Hn2vtu3e2eGl4pGMQQomYaCmJ6p0rfcOjepcvdPuoBio43DqOJz6GW4Q5En4rBs8_EOr7GHx-ut-AeMjcUo</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Tabiryan, Nelson V.</creator><creator>Roberts, David E.</creator><creator>Liao, Zhi</creator><creator>Hwang, Jeoung‐Yeon</creator><creator>Moran, Mark</creator><creator>Ouskova, Olena</creator><creator>Pshenichnyi, Andrii</creator><creator>Sigley, Justin</creator><creator>Tabirian, Anna</creator><creator>Vergara, Rafael</creator><creator>De Sio, Luciano</creator><creator>Kimball, Brian R.</creator><creator>Steeves, Diane M.</creator><creator>Slagle, Jonathan</creator><creator>McConney, Michael E.</creator><creator>Bunning, Timothy J.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2183-6910</orcidid><orcidid>https://orcid.org/0000-0002-2866-6184</orcidid><orcidid>https://orcid.org/0000-0002-6249-6836</orcidid></search><sort><creationdate>20210301</creationdate><title>Advances in Transparent Planar Optics: Enabling Large Aperture, Ultrathin Lenses</title><author>Tabiryan, Nelson V. ; Roberts, David E. ; Liao, Zhi ; Hwang, Jeoung‐Yeon ; Moran, Mark ; Ouskova, Olena ; Pshenichnyi, Andrii ; Sigley, Justin ; Tabirian, Anna ; Vergara, Rafael ; De Sio, Luciano ; Kimball, Brian R. ; Steeves, Diane M. ; Slagle, Jonathan ; McConney, Michael E. ; Bunning, Timothy J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3832-8993834475e53fb795d40fbe5c07c26e0dfc189feff46b15bfb1dc509a668ef13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive optics</topic><topic>Apertures</topic><topic>Augmented reality</topic><topic>Beam steering</topic><topic>Candles</topic><topic>diffractive waveplates</topic><topic>geometrical phase</topic><topic>Infrared spectra</topic><topic>Light emitting diodes</topic><topic>Light sources</topic><topic>liquid crystal polymers</topic><topic>liquid crystals</topic><topic>Materials science</topic><topic>Metamaterials</topic><topic>Moore's law</topic><topic>Multilayers</topic><topic>Optics</topic><topic>pellicle lenses</topic><topic>photoalignment materials</topic><topic>planar optics</topic><topic>Refractivity</topic><topic>Space telescopes</topic><topic>Substrates</topic><topic>switchable lenses</topic><topic>Thin films</topic><toplevel>online_resources</toplevel><creatorcontrib>Tabiryan, Nelson V.</creatorcontrib><creatorcontrib>Roberts, David E.</creatorcontrib><creatorcontrib>Liao, Zhi</creatorcontrib><creatorcontrib>Hwang, Jeoung‐Yeon</creatorcontrib><creatorcontrib>Moran, Mark</creatorcontrib><creatorcontrib>Ouskova, Olena</creatorcontrib><creatorcontrib>Pshenichnyi, Andrii</creatorcontrib><creatorcontrib>Sigley, Justin</creatorcontrib><creatorcontrib>Tabirian, Anna</creatorcontrib><creatorcontrib>Vergara, Rafael</creatorcontrib><creatorcontrib>De Sio, Luciano</creatorcontrib><creatorcontrib>Kimball, Brian R.</creatorcontrib><creatorcontrib>Steeves, Diane M.</creatorcontrib><creatorcontrib>Slagle, Jonathan</creatorcontrib><creatorcontrib>McConney, Michael E.</creatorcontrib><creatorcontrib>Bunning, Timothy J.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tabiryan, Nelson V.</au><au>Roberts, David E.</au><au>Liao, Zhi</au><au>Hwang, Jeoung‐Yeon</au><au>Moran, Mark</au><au>Ouskova, Olena</au><au>Pshenichnyi, Andrii</au><au>Sigley, Justin</au><au>Tabirian, Anna</au><au>Vergara, Rafael</au><au>De Sio, Luciano</au><au>Kimball, Brian R.</au><au>Steeves, Diane M.</au><au>Slagle, Jonathan</au><au>McConney, Michael E.</au><au>Bunning, Timothy J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advances in Transparent Planar Optics: Enabling Large Aperture, Ultrathin Lenses</atitle><jtitle>Advanced optical materials</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>9</volume><issue>5</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Unlike electronics, optics do not follow Moore's law. This statement, expressed by Microsoft's Bernard Kress, refers to the hard challenges to solve in augmented reality hardware. While light sources have undergone numerous revolutions from candles to light emitting diodes, the evolution in transparent optics has been much slower. For transparent materials, variation of the shape, bulk refractive index, and/or its distribution leads to control of the transmitted beam in an optical system. An alternative, the control of the optical axis orientation in an anisotropic material in transparent micrometer‐thin films on a variety of substrates, is explored here. In contrast to metamaterials, these diffractive waveplates have a continuous structure allowing multilayer/multifunctional planar optical systems with close to 100% efficiency across broad bands of wavelengths (ultraviolet to infrared) with customizable spectra. The low‐cost and fast fabrication technology of this fourth generation of optics is scalable to very large aperture sizes. In addition to wearable adaptive optics, the technology enables thin and compact non‐mechanical fast beam steering systems for light detection and ultralight space telescopes. This review will first serve as an introduction to these unique transparent, planar optical films, and then recent advances enabled by specific optical designs will be presented.
This review presents an introduction and recent advances in so‐called fourth generation optics, which use geometric phase control to enable novel optical effects. As an alternative to metasurfaces, these diffractive waveplates have a continuous structure allowing multilayer/multifunctional planar optical systems with close to 100% efficiency across a broad band of wavelengths (UV to infrared) with customizable spectra.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202001692</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-2183-6910</orcidid><orcidid>https://orcid.org/0000-0002-2866-6184</orcidid><orcidid>https://orcid.org/0000-0002-6249-6836</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2195-1071 |
ispartof | Advanced optical materials, 2021-03, Vol.9 (5), p.n/a |
issn | 2195-1071 2195-1071 |
language | eng |
recordid | cdi_proquest_journals_2496095190 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Adaptive optics Apertures Augmented reality Beam steering Candles diffractive waveplates geometrical phase Infrared spectra Light emitting diodes Light sources liquid crystal polymers liquid crystals Materials science Metamaterials Moore's law Multilayers Optics pellicle lenses photoalignment materials planar optics Refractivity Space telescopes Substrates switchable lenses Thin films |
title | Advances in Transparent Planar Optics: Enabling Large Aperture, Ultrathin Lenses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A00%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advances%20in%20Transparent%20Planar%20Optics:%20Enabling%20Large%20Aperture,%20Ultrathin%20Lenses&rft.jtitle=Advanced%20optical%20materials&rft.au=Tabiryan,%20Nelson%20V.&rft.date=2021-03-01&rft.volume=9&rft.issue=5&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202001692&rft_dat=%3Cproquest_cross%3E2496095190%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2496095190&rft_id=info:pmid/&rfr_iscdi=true |