Advances in Transparent Planar Optics: Enabling Large Aperture, Ultrathin Lenses

Unlike electronics, optics do not follow Moore's law. This statement, expressed by Microsoft's Bernard Kress, refers to the hard challenges to solve in augmented reality hardware. While light sources have undergone numerous revolutions from candles to light emitting diodes, the evolution i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced optical materials 2021-03, Vol.9 (5), p.n/a
Hauptverfasser: Tabiryan, Nelson V., Roberts, David E., Liao, Zhi, Hwang, Jeoung‐Yeon, Moran, Mark, Ouskova, Olena, Pshenichnyi, Andrii, Sigley, Justin, Tabirian, Anna, Vergara, Rafael, De Sio, Luciano, Kimball, Brian R., Steeves, Diane M., Slagle, Jonathan, McConney, Michael E., Bunning, Timothy J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 5
container_start_page
container_title Advanced optical materials
container_volume 9
creator Tabiryan, Nelson V.
Roberts, David E.
Liao, Zhi
Hwang, Jeoung‐Yeon
Moran, Mark
Ouskova, Olena
Pshenichnyi, Andrii
Sigley, Justin
Tabirian, Anna
Vergara, Rafael
De Sio, Luciano
Kimball, Brian R.
Steeves, Diane M.
Slagle, Jonathan
McConney, Michael E.
Bunning, Timothy J.
description Unlike electronics, optics do not follow Moore's law. This statement, expressed by Microsoft's Bernard Kress, refers to the hard challenges to solve in augmented reality hardware. While light sources have undergone numerous revolutions from candles to light emitting diodes, the evolution in transparent optics has been much slower. For transparent materials, variation of the shape, bulk refractive index, and/or its distribution leads to control of the transmitted beam in an optical system. An alternative, the control of the optical axis orientation in an anisotropic material in transparent micrometer‐thin films on a variety of substrates, is explored here. In contrast to metamaterials, these diffractive waveplates have a continuous structure allowing multilayer/multifunctional planar optical systems with close to 100% efficiency across broad bands of wavelengths (ultraviolet to infrared) with customizable spectra. The low‐cost and fast fabrication technology of this fourth generation of optics is scalable to very large aperture sizes. In addition to wearable adaptive optics, the technology enables thin and compact non‐mechanical fast beam steering systems for light detection and ultralight space telescopes. This review will first serve as an introduction to these unique transparent, planar optical films, and then recent advances enabled by specific optical designs will be presented. This review presents an introduction and recent advances in so‐called fourth generation optics, which use geometric phase control to enable novel optical effects. As an alternative to metasurfaces, these diffractive waveplates have a continuous structure allowing multilayer/multifunctional planar optical systems with close to 100% efficiency across a broad band of wavelengths (UV to infrared) with customizable spectra.
doi_str_mv 10.1002/adom.202001692
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2496095190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2496095190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3832-8993834475e53fb795d40fbe5c07c26e0dfc189feff46b15bfb1dc509a668ef13</originalsourceid><addsrcrecordid>eNqFkD1PwzAURS0EElXpymyJlZRnJ05itqiUDymoHdrZcpLnkip1gp2C-u9JVQRsTPcN59wnXUKuGUwZAL_TVbubcuAALJb8jIw4kyJgkLDzP_clmXi_hQGCJJRRMiLLrPrQtkRPa0tXTlvfaYe2p8tGW-3oouvr0t_TudVFU9sNzbXbIM06dP3e4S1dN73T_dtg52g9-ityYXTjcfKdY7J-nK9mz0G-eHqZZXlQhmnIg1TKIaMoEShCUyRSVBGYAkUJScljhMqULJUGjYnigonCFKwqBUgdxykaFo7Jzam3c-37Hn2vtu3e2eGl4pGMQQomYaCmJ6p0rfcOjepcvdPuoBio43DqOJz6GW4Q5En4rBs8_EOr7GHx-ut-AeMjcUo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2496095190</pqid></control><display><type>article</type><title>Advances in Transparent Planar Optics: Enabling Large Aperture, Ultrathin Lenses</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tabiryan, Nelson V. ; Roberts, David E. ; Liao, Zhi ; Hwang, Jeoung‐Yeon ; Moran, Mark ; Ouskova, Olena ; Pshenichnyi, Andrii ; Sigley, Justin ; Tabirian, Anna ; Vergara, Rafael ; De Sio, Luciano ; Kimball, Brian R. ; Steeves, Diane M. ; Slagle, Jonathan ; McConney, Michael E. ; Bunning, Timothy J.</creator><creatorcontrib>Tabiryan, Nelson V. ; Roberts, David E. ; Liao, Zhi ; Hwang, Jeoung‐Yeon ; Moran, Mark ; Ouskova, Olena ; Pshenichnyi, Andrii ; Sigley, Justin ; Tabirian, Anna ; Vergara, Rafael ; De Sio, Luciano ; Kimball, Brian R. ; Steeves, Diane M. ; Slagle, Jonathan ; McConney, Michael E. ; Bunning, Timothy J.</creatorcontrib><description>Unlike electronics, optics do not follow Moore's law. This statement, expressed by Microsoft's Bernard Kress, refers to the hard challenges to solve in augmented reality hardware. While light sources have undergone numerous revolutions from candles to light emitting diodes, the evolution in transparent optics has been much slower. For transparent materials, variation of the shape, bulk refractive index, and/or its distribution leads to control of the transmitted beam in an optical system. An alternative, the control of the optical axis orientation in an anisotropic material in transparent micrometer‐thin films on a variety of substrates, is explored here. In contrast to metamaterials, these diffractive waveplates have a continuous structure allowing multilayer/multifunctional planar optical systems with close to 100% efficiency across broad bands of wavelengths (ultraviolet to infrared) with customizable spectra. The low‐cost and fast fabrication technology of this fourth generation of optics is scalable to very large aperture sizes. In addition to wearable adaptive optics, the technology enables thin and compact non‐mechanical fast beam steering systems for light detection and ultralight space telescopes. This review will first serve as an introduction to these unique transparent, planar optical films, and then recent advances enabled by specific optical designs will be presented. This review presents an introduction and recent advances in so‐called fourth generation optics, which use geometric phase control to enable novel optical effects. As an alternative to metasurfaces, these diffractive waveplates have a continuous structure allowing multilayer/multifunctional planar optical systems with close to 100% efficiency across a broad band of wavelengths (UV to infrared) with customizable spectra.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202001692</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Adaptive optics ; Apertures ; Augmented reality ; Beam steering ; Candles ; diffractive waveplates ; geometrical phase ; Infrared spectra ; Light emitting diodes ; Light sources ; liquid crystal polymers ; liquid crystals ; Materials science ; Metamaterials ; Moore's law ; Multilayers ; Optics ; pellicle lenses ; photoalignment materials ; planar optics ; Refractivity ; Space telescopes ; Substrates ; switchable lenses ; Thin films</subject><ispartof>Advanced optical materials, 2021-03, Vol.9 (5), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3832-8993834475e53fb795d40fbe5c07c26e0dfc189feff46b15bfb1dc509a668ef13</citedby><cites>FETCH-LOGICAL-c3832-8993834475e53fb795d40fbe5c07c26e0dfc189feff46b15bfb1dc509a668ef13</cites><orcidid>0000-0002-2183-6910 ; 0000-0002-2866-6184 ; 0000-0002-6249-6836</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadom.202001692$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadom.202001692$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Tabiryan, Nelson V.</creatorcontrib><creatorcontrib>Roberts, David E.</creatorcontrib><creatorcontrib>Liao, Zhi</creatorcontrib><creatorcontrib>Hwang, Jeoung‐Yeon</creatorcontrib><creatorcontrib>Moran, Mark</creatorcontrib><creatorcontrib>Ouskova, Olena</creatorcontrib><creatorcontrib>Pshenichnyi, Andrii</creatorcontrib><creatorcontrib>Sigley, Justin</creatorcontrib><creatorcontrib>Tabirian, Anna</creatorcontrib><creatorcontrib>Vergara, Rafael</creatorcontrib><creatorcontrib>De Sio, Luciano</creatorcontrib><creatorcontrib>Kimball, Brian R.</creatorcontrib><creatorcontrib>Steeves, Diane M.</creatorcontrib><creatorcontrib>Slagle, Jonathan</creatorcontrib><creatorcontrib>McConney, Michael E.</creatorcontrib><creatorcontrib>Bunning, Timothy J.</creatorcontrib><title>Advances in Transparent Planar Optics: Enabling Large Aperture, Ultrathin Lenses</title><title>Advanced optical materials</title><description>Unlike electronics, optics do not follow Moore's law. This statement, expressed by Microsoft's Bernard Kress, refers to the hard challenges to solve in augmented reality hardware. While light sources have undergone numerous revolutions from candles to light emitting diodes, the evolution in transparent optics has been much slower. For transparent materials, variation of the shape, bulk refractive index, and/or its distribution leads to control of the transmitted beam in an optical system. An alternative, the control of the optical axis orientation in an anisotropic material in transparent micrometer‐thin films on a variety of substrates, is explored here. In contrast to metamaterials, these diffractive waveplates have a continuous structure allowing multilayer/multifunctional planar optical systems with close to 100% efficiency across broad bands of wavelengths (ultraviolet to infrared) with customizable spectra. The low‐cost and fast fabrication technology of this fourth generation of optics is scalable to very large aperture sizes. In addition to wearable adaptive optics, the technology enables thin and compact non‐mechanical fast beam steering systems for light detection and ultralight space telescopes. This review will first serve as an introduction to these unique transparent, planar optical films, and then recent advances enabled by specific optical designs will be presented. This review presents an introduction and recent advances in so‐called fourth generation optics, which use geometric phase control to enable novel optical effects. As an alternative to metasurfaces, these diffractive waveplates have a continuous structure allowing multilayer/multifunctional planar optical systems with close to 100% efficiency across a broad band of wavelengths (UV to infrared) with customizable spectra.</description><subject>Adaptive optics</subject><subject>Apertures</subject><subject>Augmented reality</subject><subject>Beam steering</subject><subject>Candles</subject><subject>diffractive waveplates</subject><subject>geometrical phase</subject><subject>Infrared spectra</subject><subject>Light emitting diodes</subject><subject>Light sources</subject><subject>liquid crystal polymers</subject><subject>liquid crystals</subject><subject>Materials science</subject><subject>Metamaterials</subject><subject>Moore's law</subject><subject>Multilayers</subject><subject>Optics</subject><subject>pellicle lenses</subject><subject>photoalignment materials</subject><subject>planar optics</subject><subject>Refractivity</subject><subject>Space telescopes</subject><subject>Substrates</subject><subject>switchable lenses</subject><subject>Thin films</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAURS0EElXpymyJlZRnJ05itqiUDymoHdrZcpLnkip1gp2C-u9JVQRsTPcN59wnXUKuGUwZAL_TVbubcuAALJb8jIw4kyJgkLDzP_clmXi_hQGCJJRRMiLLrPrQtkRPa0tXTlvfaYe2p8tGW-3oouvr0t_TudVFU9sNzbXbIM06dP3e4S1dN73T_dtg52g9-ityYXTjcfKdY7J-nK9mz0G-eHqZZXlQhmnIg1TKIaMoEShCUyRSVBGYAkUJScljhMqULJUGjYnigonCFKwqBUgdxykaFo7Jzam3c-37Hn2vtu3e2eGl4pGMQQomYaCmJ6p0rfcOjepcvdPuoBio43DqOJz6GW4Q5En4rBs8_EOr7GHx-ut-AeMjcUo</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Tabiryan, Nelson V.</creator><creator>Roberts, David E.</creator><creator>Liao, Zhi</creator><creator>Hwang, Jeoung‐Yeon</creator><creator>Moran, Mark</creator><creator>Ouskova, Olena</creator><creator>Pshenichnyi, Andrii</creator><creator>Sigley, Justin</creator><creator>Tabirian, Anna</creator><creator>Vergara, Rafael</creator><creator>De Sio, Luciano</creator><creator>Kimball, Brian R.</creator><creator>Steeves, Diane M.</creator><creator>Slagle, Jonathan</creator><creator>McConney, Michael E.</creator><creator>Bunning, Timothy J.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2183-6910</orcidid><orcidid>https://orcid.org/0000-0002-2866-6184</orcidid><orcidid>https://orcid.org/0000-0002-6249-6836</orcidid></search><sort><creationdate>20210301</creationdate><title>Advances in Transparent Planar Optics: Enabling Large Aperture, Ultrathin Lenses</title><author>Tabiryan, Nelson V. ; Roberts, David E. ; Liao, Zhi ; Hwang, Jeoung‐Yeon ; Moran, Mark ; Ouskova, Olena ; Pshenichnyi, Andrii ; Sigley, Justin ; Tabirian, Anna ; Vergara, Rafael ; De Sio, Luciano ; Kimball, Brian R. ; Steeves, Diane M. ; Slagle, Jonathan ; McConney, Michael E. ; Bunning, Timothy J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3832-8993834475e53fb795d40fbe5c07c26e0dfc189feff46b15bfb1dc509a668ef13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive optics</topic><topic>Apertures</topic><topic>Augmented reality</topic><topic>Beam steering</topic><topic>Candles</topic><topic>diffractive waveplates</topic><topic>geometrical phase</topic><topic>Infrared spectra</topic><topic>Light emitting diodes</topic><topic>Light sources</topic><topic>liquid crystal polymers</topic><topic>liquid crystals</topic><topic>Materials science</topic><topic>Metamaterials</topic><topic>Moore's law</topic><topic>Multilayers</topic><topic>Optics</topic><topic>pellicle lenses</topic><topic>photoalignment materials</topic><topic>planar optics</topic><topic>Refractivity</topic><topic>Space telescopes</topic><topic>Substrates</topic><topic>switchable lenses</topic><topic>Thin films</topic><toplevel>online_resources</toplevel><creatorcontrib>Tabiryan, Nelson V.</creatorcontrib><creatorcontrib>Roberts, David E.</creatorcontrib><creatorcontrib>Liao, Zhi</creatorcontrib><creatorcontrib>Hwang, Jeoung‐Yeon</creatorcontrib><creatorcontrib>Moran, Mark</creatorcontrib><creatorcontrib>Ouskova, Olena</creatorcontrib><creatorcontrib>Pshenichnyi, Andrii</creatorcontrib><creatorcontrib>Sigley, Justin</creatorcontrib><creatorcontrib>Tabirian, Anna</creatorcontrib><creatorcontrib>Vergara, Rafael</creatorcontrib><creatorcontrib>De Sio, Luciano</creatorcontrib><creatorcontrib>Kimball, Brian R.</creatorcontrib><creatorcontrib>Steeves, Diane M.</creatorcontrib><creatorcontrib>Slagle, Jonathan</creatorcontrib><creatorcontrib>McConney, Michael E.</creatorcontrib><creatorcontrib>Bunning, Timothy J.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tabiryan, Nelson V.</au><au>Roberts, David E.</au><au>Liao, Zhi</au><au>Hwang, Jeoung‐Yeon</au><au>Moran, Mark</au><au>Ouskova, Olena</au><au>Pshenichnyi, Andrii</au><au>Sigley, Justin</au><au>Tabirian, Anna</au><au>Vergara, Rafael</au><au>De Sio, Luciano</au><au>Kimball, Brian R.</au><au>Steeves, Diane M.</au><au>Slagle, Jonathan</au><au>McConney, Michael E.</au><au>Bunning, Timothy J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advances in Transparent Planar Optics: Enabling Large Aperture, Ultrathin Lenses</atitle><jtitle>Advanced optical materials</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>9</volume><issue>5</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Unlike electronics, optics do not follow Moore's law. This statement, expressed by Microsoft's Bernard Kress, refers to the hard challenges to solve in augmented reality hardware. While light sources have undergone numerous revolutions from candles to light emitting diodes, the evolution in transparent optics has been much slower. For transparent materials, variation of the shape, bulk refractive index, and/or its distribution leads to control of the transmitted beam in an optical system. An alternative, the control of the optical axis orientation in an anisotropic material in transparent micrometer‐thin films on a variety of substrates, is explored here. In contrast to metamaterials, these diffractive waveplates have a continuous structure allowing multilayer/multifunctional planar optical systems with close to 100% efficiency across broad bands of wavelengths (ultraviolet to infrared) with customizable spectra. The low‐cost and fast fabrication technology of this fourth generation of optics is scalable to very large aperture sizes. In addition to wearable adaptive optics, the technology enables thin and compact non‐mechanical fast beam steering systems for light detection and ultralight space telescopes. This review will first serve as an introduction to these unique transparent, planar optical films, and then recent advances enabled by specific optical designs will be presented. This review presents an introduction and recent advances in so‐called fourth generation optics, which use geometric phase control to enable novel optical effects. As an alternative to metasurfaces, these diffractive waveplates have a continuous structure allowing multilayer/multifunctional planar optical systems with close to 100% efficiency across a broad band of wavelengths (UV to infrared) with customizable spectra.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202001692</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-2183-6910</orcidid><orcidid>https://orcid.org/0000-0002-2866-6184</orcidid><orcidid>https://orcid.org/0000-0002-6249-6836</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2195-1071
ispartof Advanced optical materials, 2021-03, Vol.9 (5), p.n/a
issn 2195-1071
2195-1071
language eng
recordid cdi_proquest_journals_2496095190
source Wiley Online Library Journals Frontfile Complete
subjects Adaptive optics
Apertures
Augmented reality
Beam steering
Candles
diffractive waveplates
geometrical phase
Infrared spectra
Light emitting diodes
Light sources
liquid crystal polymers
liquid crystals
Materials science
Metamaterials
Moore's law
Multilayers
Optics
pellicle lenses
photoalignment materials
planar optics
Refractivity
Space telescopes
Substrates
switchable lenses
Thin films
title Advances in Transparent Planar Optics: Enabling Large Aperture, Ultrathin Lenses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A00%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advances%20in%20Transparent%20Planar%20Optics:%20Enabling%20Large%20Aperture,%20Ultrathin%20Lenses&rft.jtitle=Advanced%20optical%20materials&rft.au=Tabiryan,%20Nelson%20V.&rft.date=2021-03-01&rft.volume=9&rft.issue=5&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202001692&rft_dat=%3Cproquest_cross%3E2496095190%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2496095190&rft_id=info:pmid/&rfr_iscdi=true