NOx synthesis by atmospheric‐pressure N2/O2 filamentary DBD plasma over water: Physicochemical mechanisms of plasma–liquid interactions

In this study, an atmospheric‐pressure filamentary dielectric barrier discharge plasma is produced over a deionized (DI) water surface to study the physicochemical mechanisms of plasma–liquid surface interactions for NOx synthesis. The gas‐phase plasma diagnostics are performed using optical emissio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plasma processes and polymers 2021-03, Vol.18 (3), p.n/a
Hauptverfasser: Roy, Nepal C., Pattyn, Cédric, Remy, Antoine, Maira, Nicolas, Reniers, François
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page
container_title Plasma processes and polymers
container_volume 18
creator Roy, Nepal C.
Pattyn, Cédric
Remy, Antoine
Maira, Nicolas
Reniers, François
description In this study, an atmospheric‐pressure filamentary dielectric barrier discharge plasma is produced over a deionized (DI) water surface to study the physicochemical mechanisms of plasma–liquid surface interactions for NOx synthesis. The gas‐phase plasma diagnostics are performed using optical emission spectroscopy, Fourier‐transform infrared spectroscopy, and by recording voltage–current curves, and liquid‐phase species are analyzed using ion chromatography and UV−visible spectrophotometer. The investigations indicate that the reaction pathways for reactive oxygen and nitrogen species (H2O2, NO 2 ‐, N O 3 −) formation in DI water depend on different experimental conditions. It is observed that the conversion of nitrites into nitrates is significantly influenced by reactive oxygen species. The energy yield for the total amount of NOx synthesized ranges from 1.3 × 10−4 to 3.4 × 10−3 mol/MJ. A newly developed plasma–liquid configuration using filamentary dielectric barrier discharges shows that the conversion and production mechanism of nitrites into nitrates in the liquid is significantly influenced by reactive oxygen species, that is, O and O3. The conversion mechanism of NO 2 − into NO 3 − in such a nonthermal plasma–liquid system is very appealing for future applications, for example, nitrogen fixation, plasma agriculture, plasma medicine, and so forth.
doi_str_mv 10.1002/ppap.202000087
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2495984605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2495984605</sourcerecordid><originalsourceid>FETCH-LOGICAL-g1857-f2c4d029871d3e4ba32e35ed7dfb4566700515fd0ff568a8340aebd6a646e7ad3</originalsourceid><addsrcrecordid>eNo9kD1PwzAQhiMEEqWwMltiTntxYsdhKy1fUtVmgDlykgtxla_aKSVbdxYk_mF_CamoesvdSe97r-6xrFsHRg4AHTeNbEYUKPQl_DNr4HCH2kLw4Pw0M7i0roxZAbjABAys78Xyi5iuanM0ypC4I7Ita9PkqFWy3_00Go3ZaCQLOl5SkqlClli1Undk9jAjTSFNKUn9iZpsZYv6noR5Z1RSJzmWKpEFKTHJZaVMaUidHQ373W-h1huVElX1Jpm0qq7MtXWRycLgzbEPrfenx7fpiz1fPr9OJ3P7wxHMtzOaeCnQQPhO6qIXS5eiyzD10yz2GOc-AHNYlkKWMS6kcD2QGKdcco-jL1N3aN393210vd6gaaNVvdFVHxlRL2CB8DiwXhX8q7aqwC5qtCr7ryMHogPt6EA7OtGOwnASnjb3Dw8oes8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2495984605</pqid></control><display><type>article</type><title>NOx synthesis by atmospheric‐pressure N2/O2 filamentary DBD plasma over water: Physicochemical mechanisms of plasma–liquid interactions</title><source>Wiley-Blackwell subscription journals</source><creator>Roy, Nepal C. ; Pattyn, Cédric ; Remy, Antoine ; Maira, Nicolas ; Reniers, François</creator><creatorcontrib>Roy, Nepal C. ; Pattyn, Cédric ; Remy, Antoine ; Maira, Nicolas ; Reniers, François</creatorcontrib><description>In this study, an atmospheric‐pressure filamentary dielectric barrier discharge plasma is produced over a deionized (DI) water surface to study the physicochemical mechanisms of plasma–liquid surface interactions for NOx synthesis. The gas‐phase plasma diagnostics are performed using optical emission spectroscopy, Fourier‐transform infrared spectroscopy, and by recording voltage–current curves, and liquid‐phase species are analyzed using ion chromatography and UV−visible spectrophotometer. The investigations indicate that the reaction pathways for reactive oxygen and nitrogen species (H2O2, NO 2 ‐, N O 3 −) formation in DI water depend on different experimental conditions. It is observed that the conversion of nitrites into nitrates is significantly influenced by reactive oxygen species. The energy yield for the total amount of NOx synthesized ranges from 1.3 × 10−4 to 3.4 × 10−3 mol/MJ. A newly developed plasma–liquid configuration using filamentary dielectric barrier discharges shows that the conversion and production mechanism of nitrites into nitrates in the liquid is significantly influenced by reactive oxygen species, that is, O and O3. The conversion mechanism of NO 2 − into NO 3 − in such a nonthermal plasma–liquid system is very appealing for future applications, for example, nitrogen fixation, plasma agriculture, plasma medicine, and so forth.</description><identifier>ISSN: 1612-8850</identifier><identifier>EISSN: 1612-8869</identifier><identifier>DOI: 10.1002/ppap.202000087</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>collision processes ; Deionization ; Dielectric barrier discharge ; filamentary dielectric barrier discharge ; Hydrogen peroxide ; Liquid surfaces ; Nitrates ; Nitrites ; Nitrogen dioxide ; nitrogen fixation ; Nitrogen oxides ; Nitrogen plasma ; NOx synthesis ; Optical emission spectroscopy ; Plasma ; Plasma diagnostics ; plasma–liquid interactions ; Spectrum analysis ; Synthesis</subject><ispartof>Plasma processes and polymers, 2021-03, Vol.18 (3), p.n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6578-8148</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fppap.202000087$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fppap.202000087$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Roy, Nepal C.</creatorcontrib><creatorcontrib>Pattyn, Cédric</creatorcontrib><creatorcontrib>Remy, Antoine</creatorcontrib><creatorcontrib>Maira, Nicolas</creatorcontrib><creatorcontrib>Reniers, François</creatorcontrib><title>NOx synthesis by atmospheric‐pressure N2/O2 filamentary DBD plasma over water: Physicochemical mechanisms of plasma–liquid interactions</title><title>Plasma processes and polymers</title><description>In this study, an atmospheric‐pressure filamentary dielectric barrier discharge plasma is produced over a deionized (DI) water surface to study the physicochemical mechanisms of plasma–liquid surface interactions for NOx synthesis. The gas‐phase plasma diagnostics are performed using optical emission spectroscopy, Fourier‐transform infrared spectroscopy, and by recording voltage–current curves, and liquid‐phase species are analyzed using ion chromatography and UV−visible spectrophotometer. The investigations indicate that the reaction pathways for reactive oxygen and nitrogen species (H2O2, NO 2 ‐, N O 3 −) formation in DI water depend on different experimental conditions. It is observed that the conversion of nitrites into nitrates is significantly influenced by reactive oxygen species. The energy yield for the total amount of NOx synthesized ranges from 1.3 × 10−4 to 3.4 × 10−3 mol/MJ. A newly developed plasma–liquid configuration using filamentary dielectric barrier discharges shows that the conversion and production mechanism of nitrites into nitrates in the liquid is significantly influenced by reactive oxygen species, that is, O and O3. The conversion mechanism of NO 2 − into NO 3 − in such a nonthermal plasma–liquid system is very appealing for future applications, for example, nitrogen fixation, plasma agriculture, plasma medicine, and so forth.</description><subject>collision processes</subject><subject>Deionization</subject><subject>Dielectric barrier discharge</subject><subject>filamentary dielectric barrier discharge</subject><subject>Hydrogen peroxide</subject><subject>Liquid surfaces</subject><subject>Nitrates</subject><subject>Nitrites</subject><subject>Nitrogen dioxide</subject><subject>nitrogen fixation</subject><subject>Nitrogen oxides</subject><subject>Nitrogen plasma</subject><subject>NOx synthesis</subject><subject>Optical emission spectroscopy</subject><subject>Plasma</subject><subject>Plasma diagnostics</subject><subject>plasma–liquid interactions</subject><subject>Spectrum analysis</subject><subject>Synthesis</subject><issn>1612-8850</issn><issn>1612-8869</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kD1PwzAQhiMEEqWwMltiTntxYsdhKy1fUtVmgDlykgtxla_aKSVbdxYk_mF_CamoesvdSe97r-6xrFsHRg4AHTeNbEYUKPQl_DNr4HCH2kLw4Pw0M7i0roxZAbjABAys78Xyi5iuanM0ypC4I7Ita9PkqFWy3_00Go3ZaCQLOl5SkqlClli1Undk9jAjTSFNKUn9iZpsZYv6noR5Z1RSJzmWKpEFKTHJZaVMaUidHQ373W-h1huVElX1Jpm0qq7MtXWRycLgzbEPrfenx7fpiz1fPr9OJ3P7wxHMtzOaeCnQQPhO6qIXS5eiyzD10yz2GOc-AHNYlkKWMS6kcD2QGKdcco-jL1N3aN393210vd6gaaNVvdFVHxlRL2CB8DiwXhX8q7aqwC5qtCr7ryMHogPt6EA7OtGOwnASnjb3Dw8oes8</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Roy, Nepal C.</creator><creator>Pattyn, Cédric</creator><creator>Remy, Antoine</creator><creator>Maira, Nicolas</creator><creator>Reniers, François</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-6578-8148</orcidid></search><sort><creationdate>202103</creationdate><title>NOx synthesis by atmospheric‐pressure N2/O2 filamentary DBD plasma over water: Physicochemical mechanisms of plasma–liquid interactions</title><author>Roy, Nepal C. ; Pattyn, Cédric ; Remy, Antoine ; Maira, Nicolas ; Reniers, François</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g1857-f2c4d029871d3e4ba32e35ed7dfb4566700515fd0ff568a8340aebd6a646e7ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>collision processes</topic><topic>Deionization</topic><topic>Dielectric barrier discharge</topic><topic>filamentary dielectric barrier discharge</topic><topic>Hydrogen peroxide</topic><topic>Liquid surfaces</topic><topic>Nitrates</topic><topic>Nitrites</topic><topic>Nitrogen dioxide</topic><topic>nitrogen fixation</topic><topic>Nitrogen oxides</topic><topic>Nitrogen plasma</topic><topic>NOx synthesis</topic><topic>Optical emission spectroscopy</topic><topic>Plasma</topic><topic>Plasma diagnostics</topic><topic>plasma–liquid interactions</topic><topic>Spectrum analysis</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roy, Nepal C.</creatorcontrib><creatorcontrib>Pattyn, Cédric</creatorcontrib><creatorcontrib>Remy, Antoine</creatorcontrib><creatorcontrib>Maira, Nicolas</creatorcontrib><creatorcontrib>Reniers, François</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Plasma processes and polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roy, Nepal C.</au><au>Pattyn, Cédric</au><au>Remy, Antoine</au><au>Maira, Nicolas</au><au>Reniers, François</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NOx synthesis by atmospheric‐pressure N2/O2 filamentary DBD plasma over water: Physicochemical mechanisms of plasma–liquid interactions</atitle><jtitle>Plasma processes and polymers</jtitle><date>2021-03</date><risdate>2021</risdate><volume>18</volume><issue>3</issue><epage>n/a</epage><issn>1612-8850</issn><eissn>1612-8869</eissn><abstract>In this study, an atmospheric‐pressure filamentary dielectric barrier discharge plasma is produced over a deionized (DI) water surface to study the physicochemical mechanisms of plasma–liquid surface interactions for NOx synthesis. The gas‐phase plasma diagnostics are performed using optical emission spectroscopy, Fourier‐transform infrared spectroscopy, and by recording voltage–current curves, and liquid‐phase species are analyzed using ion chromatography and UV−visible spectrophotometer. The investigations indicate that the reaction pathways for reactive oxygen and nitrogen species (H2O2, NO 2 ‐, N O 3 −) formation in DI water depend on different experimental conditions. It is observed that the conversion of nitrites into nitrates is significantly influenced by reactive oxygen species. The energy yield for the total amount of NOx synthesized ranges from 1.3 × 10−4 to 3.4 × 10−3 mol/MJ. A newly developed plasma–liquid configuration using filamentary dielectric barrier discharges shows that the conversion and production mechanism of nitrites into nitrates in the liquid is significantly influenced by reactive oxygen species, that is, O and O3. The conversion mechanism of NO 2 − into NO 3 − in such a nonthermal plasma–liquid system is very appealing for future applications, for example, nitrogen fixation, plasma agriculture, plasma medicine, and so forth.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ppap.202000087</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6578-8148</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1612-8850
ispartof Plasma processes and polymers, 2021-03, Vol.18 (3), p.n/a
issn 1612-8850
1612-8869
language eng
recordid cdi_proquest_journals_2495984605
source Wiley-Blackwell subscription journals
subjects collision processes
Deionization
Dielectric barrier discharge
filamentary dielectric barrier discharge
Hydrogen peroxide
Liquid surfaces
Nitrates
Nitrites
Nitrogen dioxide
nitrogen fixation
Nitrogen oxides
Nitrogen plasma
NOx synthesis
Optical emission spectroscopy
Plasma
Plasma diagnostics
plasma–liquid interactions
Spectrum analysis
Synthesis
title NOx synthesis by atmospheric‐pressure N2/O2 filamentary DBD plasma over water: Physicochemical mechanisms of plasma–liquid interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T18%3A38%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NOx%20synthesis%20by%20atmospheric%E2%80%90pressure%20N2/O2%20filamentary%20DBD%20plasma%20over%20water:%20Physicochemical%20mechanisms%20of%20plasma%E2%80%93liquid%20interactions&rft.jtitle=Plasma%20processes%20and%20polymers&rft.au=Roy,%20Nepal%20C.&rft.date=2021-03&rft.volume=18&rft.issue=3&rft.epage=n/a&rft.issn=1612-8850&rft.eissn=1612-8869&rft_id=info:doi/10.1002/ppap.202000087&rft_dat=%3Cproquest_wiley%3E2495984605%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2495984605&rft_id=info:pmid/&rfr_iscdi=true