Ocean acidification may slow the pace of tropicalization of temperate fish communities

Poleward range extensions by warm-adapted sea urchins are switching temperate marine ecosystems from kelp-dominated to barren-dominated systems that favour the establishment of range-extending tropical fishes. Yet, such tropicalization may be buffered by ocean acidification, which reduces urchin gra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature climate change 2021-03, Vol.11 (3), p.249-256
Hauptverfasser: Coni, Ericka O. C., Nagelkerken, Ivan, Ferreira, Camilo M., Connell, Sean D., Booth, David J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 256
container_issue 3
container_start_page 249
container_title Nature climate change
container_volume 11
creator Coni, Ericka O. C.
Nagelkerken, Ivan
Ferreira, Camilo M.
Connell, Sean D.
Booth, David J.
description Poleward range extensions by warm-adapted sea urchins are switching temperate marine ecosystems from kelp-dominated to barren-dominated systems that favour the establishment of range-extending tropical fishes. Yet, such tropicalization may be buffered by ocean acidification, which reduces urchin grazing performance and the urchin barrens that tropical range-extending fishes prefer. Using ecosystems experiencing natural warming and acidification, we show that ocean acidification could buffer warming-facilitated tropicalization by reducing urchin populations (by 87%) and inhibiting the formation of barrens. This buffering effect of CO 2 enrichment was observed at natural CO 2 vents that are associated with a shift from a barren-dominated to a turf-dominated state, which we found is less favourable to tropical fishes. Together, these observations suggest that ocean acidification may buffer the tropicalization effect of ocean warming against urchin barren formation via multiple processes (fewer urchins and barrens) and consequently slow the increasing rate of tropicalization of temperate fish communities. Warming is shifting temperate zones to become more tropical. Natural warming and CO 2 vent sites show that acidification buffers warming effects, reducing sea urchin numbers and grazing, thus creating a turf-dominated temperate habitat that is less hospitable to tropical fish than urchin barrens.
doi_str_mv 10.1038/s41558-020-00980-w
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2495701731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2495701731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-1a6f1e6f89f2b9db12cd0bee2df989c36f3a13956a81cb63ed98d52261ce1983</originalsourceid><addsrcrecordid>eNqNkMtKAzEUhgdRsNS-gKuASxnNpZNJllK8geBGxF3IZE5sSmcyJimlPr1pR3QnBkIOh-9PTr6iOCf4imAmruOcVJUoMcUlxlLgcntUTEidW7yW4vinFm-nxSzGFc6rJpxxOSlenw3oHmnjWmed0cn5HnV6h-Lab1FaAhq0AeQtSsEPGVi7zxHat6AbIOgEyLq4RMZ33aZ3yUE8K06sXkeYfZ_T4uXu9mXxUD493z8ubp5KM6cylURzS4BbIS1tZNsQalrcANDWSiEN45ZpwmTFtSCm4QxaKdqKUk4MECnYtLgYrx2C_9hATGrlN6HPLyo6l1WNSc1IpuhImeBjDGDVEFynw04RrPYG1WhQZYPqYFBtc-hyDG2h8TYaB72Bn2A2yAnPGx9kZlr8n164dFC48Js-5SgbozHj_TuE3z_8Md4XfnGWDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2495701731</pqid></control><display><type>article</type><title>Ocean acidification may slow the pace of tropicalization of temperate fish communities</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Coni, Ericka O. C. ; Nagelkerken, Ivan ; Ferreira, Camilo M. ; Connell, Sean D. ; Booth, David J.</creator><creatorcontrib>Coni, Ericka O. C. ; Nagelkerken, Ivan ; Ferreira, Camilo M. ; Connell, Sean D. ; Booth, David J.</creatorcontrib><description>Poleward range extensions by warm-adapted sea urchins are switching temperate marine ecosystems from kelp-dominated to barren-dominated systems that favour the establishment of range-extending tropical fishes. Yet, such tropicalization may be buffered by ocean acidification, which reduces urchin grazing performance and the urchin barrens that tropical range-extending fishes prefer. Using ecosystems experiencing natural warming and acidification, we show that ocean acidification could buffer warming-facilitated tropicalization by reducing urchin populations (by 87%) and inhibiting the formation of barrens. This buffering effect of CO 2 enrichment was observed at natural CO 2 vents that are associated with a shift from a barren-dominated to a turf-dominated state, which we found is less favourable to tropical fishes. Together, these observations suggest that ocean acidification may buffer the tropicalization effect of ocean warming against urchin barren formation via multiple processes (fewer urchins and barrens) and consequently slow the increasing rate of tropicalization of temperate fish communities. Warming is shifting temperate zones to become more tropical. Natural warming and CO 2 vent sites show that acidification buffers warming effects, reducing sea urchin numbers and grazing, thus creating a turf-dominated temperate habitat that is less hospitable to tropical fish than urchin barrens.</description><identifier>ISSN: 1758-678X</identifier><identifier>EISSN: 1758-6798</identifier><identifier>DOI: 10.1038/s41558-020-00980-w</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/158/2165 ; 631/158/853 ; 704/106/694/2739 ; 704/106/829/826 ; Acidification ; Buffers ; Carbon dioxide ; Climate Change ; Climate Change/Climate Change Impacts ; Earth and Environmental Science ; Echinoidea ; Ecosystems ; Environment ; Environmental Law/Policy/Ecojustice ; Environmental Sciences ; Environmental Sciences &amp; Ecology ; Environmental Studies ; Fish ; Grazing ; Kelp ; Life Sciences &amp; Biomedicine ; Marine ecosystems ; Marine fishes ; Marine invertebrates ; Meteorology &amp; Atmospheric Sciences ; Ocean acidification ; Ocean temperature ; Ocean warming ; Oceans ; Physical Sciences ; Range extension ; Science &amp; Technology ; Sea urchins ; Temperate zones ; Tropical climate ; Tropical fish ; Tropical fishes ; Turf ; Vents</subject><ispartof>Nature climate change, 2021-03, Vol.11 (3), p.249-256</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>17</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000616061000007</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c429t-1a6f1e6f89f2b9db12cd0bee2df989c36f3a13956a81cb63ed98d52261ce1983</citedby><cites>FETCH-LOGICAL-c429t-1a6f1e6f89f2b9db12cd0bee2df989c36f3a13956a81cb63ed98d52261ce1983</cites><orcidid>0000-0003-4499-3940 ; 0000-0002-5350-6852 ; 0000-0003-2789-7455 ; 0000-0002-8256-1412 ; 0000-0001-9022-1963</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41558-020-00980-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41558-020-00980-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Coni, Ericka O. C.</creatorcontrib><creatorcontrib>Nagelkerken, Ivan</creatorcontrib><creatorcontrib>Ferreira, Camilo M.</creatorcontrib><creatorcontrib>Connell, Sean D.</creatorcontrib><creatorcontrib>Booth, David J.</creatorcontrib><title>Ocean acidification may slow the pace of tropicalization of temperate fish communities</title><title>Nature climate change</title><addtitle>Nat. Clim. Chang</addtitle><addtitle>NAT CLIM CHANGE</addtitle><description>Poleward range extensions by warm-adapted sea urchins are switching temperate marine ecosystems from kelp-dominated to barren-dominated systems that favour the establishment of range-extending tropical fishes. Yet, such tropicalization may be buffered by ocean acidification, which reduces urchin grazing performance and the urchin barrens that tropical range-extending fishes prefer. Using ecosystems experiencing natural warming and acidification, we show that ocean acidification could buffer warming-facilitated tropicalization by reducing urchin populations (by 87%) and inhibiting the formation of barrens. This buffering effect of CO 2 enrichment was observed at natural CO 2 vents that are associated with a shift from a barren-dominated to a turf-dominated state, which we found is less favourable to tropical fishes. Together, these observations suggest that ocean acidification may buffer the tropicalization effect of ocean warming against urchin barren formation via multiple processes (fewer urchins and barrens) and consequently slow the increasing rate of tropicalization of temperate fish communities. Warming is shifting temperate zones to become more tropical. Natural warming and CO 2 vent sites show that acidification buffers warming effects, reducing sea urchin numbers and grazing, thus creating a turf-dominated temperate habitat that is less hospitable to tropical fish than urchin barrens.</description><subject>631/158/2165</subject><subject>631/158/853</subject><subject>704/106/694/2739</subject><subject>704/106/829/826</subject><subject>Acidification</subject><subject>Buffers</subject><subject>Carbon dioxide</subject><subject>Climate Change</subject><subject>Climate Change/Climate Change Impacts</subject><subject>Earth and Environmental Science</subject><subject>Echinoidea</subject><subject>Ecosystems</subject><subject>Environment</subject><subject>Environmental Law/Policy/Ecojustice</subject><subject>Environmental Sciences</subject><subject>Environmental Sciences &amp; Ecology</subject><subject>Environmental Studies</subject><subject>Fish</subject><subject>Grazing</subject><subject>Kelp</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Marine ecosystems</subject><subject>Marine fishes</subject><subject>Marine invertebrates</subject><subject>Meteorology &amp; Atmospheric Sciences</subject><subject>Ocean acidification</subject><subject>Ocean temperature</subject><subject>Ocean warming</subject><subject>Oceans</subject><subject>Physical Sciences</subject><subject>Range extension</subject><subject>Science &amp; Technology</subject><subject>Sea urchins</subject><subject>Temperate zones</subject><subject>Tropical climate</subject><subject>Tropical fish</subject><subject>Tropical fishes</subject><subject>Turf</subject><subject>Vents</subject><issn>1758-678X</issn><issn>1758-6798</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>GIZIO</sourceid><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkMtKAzEUhgdRsNS-gKuASxnNpZNJllK8geBGxF3IZE5sSmcyJimlPr1pR3QnBkIOh-9PTr6iOCf4imAmruOcVJUoMcUlxlLgcntUTEidW7yW4vinFm-nxSzGFc6rJpxxOSlenw3oHmnjWmed0cn5HnV6h-Lab1FaAhq0AeQtSsEPGVi7zxHat6AbIOgEyLq4RMZ33aZ3yUE8K06sXkeYfZ_T4uXu9mXxUD493z8ubp5KM6cylURzS4BbIS1tZNsQalrcANDWSiEN45ZpwmTFtSCm4QxaKdqKUk4MECnYtLgYrx2C_9hATGrlN6HPLyo6l1WNSc1IpuhImeBjDGDVEFynw04RrPYG1WhQZYPqYFBtc-hyDG2h8TYaB72Bn2A2yAnPGx9kZlr8n164dFC48Js-5SgbozHj_TuE3z_8Md4XfnGWDA</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Coni, Ericka O. C.</creator><creator>Nagelkerken, Ivan</creator><creator>Ferreira, Camilo M.</creator><creator>Connell, Sean D.</creator><creator>Booth, David J.</creator><general>Nature Publishing Group UK</general><general>Springer Nature</general><general>Nature Publishing Group</general><scope>17B</scope><scope>BLEPL</scope><scope>DTL</scope><scope>DVR</scope><scope>EGQ</scope><scope>GIZIO</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-4499-3940</orcidid><orcidid>https://orcid.org/0000-0002-5350-6852</orcidid><orcidid>https://orcid.org/0000-0003-2789-7455</orcidid><orcidid>https://orcid.org/0000-0002-8256-1412</orcidid><orcidid>https://orcid.org/0000-0001-9022-1963</orcidid></search><sort><creationdate>20210301</creationdate><title>Ocean acidification may slow the pace of tropicalization of temperate fish communities</title><author>Coni, Ericka O. C. ; Nagelkerken, Ivan ; Ferreira, Camilo M. ; Connell, Sean D. ; Booth, David J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-1a6f1e6f89f2b9db12cd0bee2df989c36f3a13956a81cb63ed98d52261ce1983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/158/2165</topic><topic>631/158/853</topic><topic>704/106/694/2739</topic><topic>704/106/829/826</topic><topic>Acidification</topic><topic>Buffers</topic><topic>Carbon dioxide</topic><topic>Climate Change</topic><topic>Climate Change/Climate Change Impacts</topic><topic>Earth and Environmental Science</topic><topic>Echinoidea</topic><topic>Ecosystems</topic><topic>Environment</topic><topic>Environmental Law/Policy/Ecojustice</topic><topic>Environmental Sciences</topic><topic>Environmental Sciences &amp; Ecology</topic><topic>Environmental Studies</topic><topic>Fish</topic><topic>Grazing</topic><topic>Kelp</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Marine ecosystems</topic><topic>Marine fishes</topic><topic>Marine invertebrates</topic><topic>Meteorology &amp; Atmospheric Sciences</topic><topic>Ocean acidification</topic><topic>Ocean temperature</topic><topic>Ocean warming</topic><topic>Oceans</topic><topic>Physical Sciences</topic><topic>Range extension</topic><topic>Science &amp; Technology</topic><topic>Sea urchins</topic><topic>Temperate zones</topic><topic>Tropical climate</topic><topic>Tropical fish</topic><topic>Tropical fishes</topic><topic>Turf</topic><topic>Vents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coni, Ericka O. C.</creatorcontrib><creatorcontrib>Nagelkerken, Ivan</creatorcontrib><creatorcontrib>Ferreira, Camilo M.</creatorcontrib><creatorcontrib>Connell, Sean D.</creatorcontrib><creatorcontrib>Booth, David J.</creatorcontrib><collection>Web of Knowledge</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Social Sciences Citation Index</collection><collection>Web of Science Primary (SCIE, SSCI &amp; AHCI)</collection><collection>Web of Science - Social Sciences Citation Index – 2021</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Nature climate change</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coni, Ericka O. C.</au><au>Nagelkerken, Ivan</au><au>Ferreira, Camilo M.</au><au>Connell, Sean D.</au><au>Booth, David J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ocean acidification may slow the pace of tropicalization of temperate fish communities</atitle><jtitle>Nature climate change</jtitle><stitle>Nat. Clim. Chang</stitle><stitle>NAT CLIM CHANGE</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>11</volume><issue>3</issue><spage>249</spage><epage>256</epage><pages>249-256</pages><issn>1758-678X</issn><eissn>1758-6798</eissn><abstract>Poleward range extensions by warm-adapted sea urchins are switching temperate marine ecosystems from kelp-dominated to barren-dominated systems that favour the establishment of range-extending tropical fishes. Yet, such tropicalization may be buffered by ocean acidification, which reduces urchin grazing performance and the urchin barrens that tropical range-extending fishes prefer. Using ecosystems experiencing natural warming and acidification, we show that ocean acidification could buffer warming-facilitated tropicalization by reducing urchin populations (by 87%) and inhibiting the formation of barrens. This buffering effect of CO 2 enrichment was observed at natural CO 2 vents that are associated with a shift from a barren-dominated to a turf-dominated state, which we found is less favourable to tropical fishes. Together, these observations suggest that ocean acidification may buffer the tropicalization effect of ocean warming against urchin barren formation via multiple processes (fewer urchins and barrens) and consequently slow the increasing rate of tropicalization of temperate fish communities. Warming is shifting temperate zones to become more tropical. Natural warming and CO 2 vent sites show that acidification buffers warming effects, reducing sea urchin numbers and grazing, thus creating a turf-dominated temperate habitat that is less hospitable to tropical fish than urchin barrens.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41558-020-00980-w</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4499-3940</orcidid><orcidid>https://orcid.org/0000-0002-5350-6852</orcidid><orcidid>https://orcid.org/0000-0003-2789-7455</orcidid><orcidid>https://orcid.org/0000-0002-8256-1412</orcidid><orcidid>https://orcid.org/0000-0001-9022-1963</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1758-678X
ispartof Nature climate change, 2021-03, Vol.11 (3), p.249-256
issn 1758-678X
1758-6798
language eng
recordid cdi_proquest_journals_2495701731
source SpringerLink Journals; Nature Journals Online
subjects 631/158/2165
631/158/853
704/106/694/2739
704/106/829/826
Acidification
Buffers
Carbon dioxide
Climate Change
Climate Change/Climate Change Impacts
Earth and Environmental Science
Echinoidea
Ecosystems
Environment
Environmental Law/Policy/Ecojustice
Environmental Sciences
Environmental Sciences & Ecology
Environmental Studies
Fish
Grazing
Kelp
Life Sciences & Biomedicine
Marine ecosystems
Marine fishes
Marine invertebrates
Meteorology & Atmospheric Sciences
Ocean acidification
Ocean temperature
Ocean warming
Oceans
Physical Sciences
Range extension
Science & Technology
Sea urchins
Temperate zones
Tropical climate
Tropical fish
Tropical fishes
Turf
Vents
title Ocean acidification may slow the pace of tropicalization of temperate fish communities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T07%3A34%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ocean%20acidification%20may%20slow%20the%20pace%20of%20tropicalization%20of%20temperate%20fish%20communities&rft.jtitle=Nature%20climate%20change&rft.au=Coni,%20Ericka%20O.%20C.&rft.date=2021-03-01&rft.volume=11&rft.issue=3&rft.spage=249&rft.epage=256&rft.pages=249-256&rft.issn=1758-678X&rft.eissn=1758-6798&rft_id=info:doi/10.1038/s41558-020-00980-w&rft_dat=%3Cproquest_sprin%3E2495701731%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2495701731&rft_id=info:pmid/&rfr_iscdi=true