Vertical time-harmonic coupling vibration of an impermeable, rigid, circular plate resting on a finite, poroelastic soil layer

Studies associated with dynamic plate–medium interactions generally assumed the plate structures to be permeable for the sake of convenience. But the effect and applicability of such an assumption are still unclear, and then the pore fluid pressure on the plate and medium interfaces cannot be obtain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta geotechnica 2021-03, Vol.16 (3), p.911-935
Hauptverfasser: Zhang, Shiping, Pak, Ronald Y. S., Zhang, Junhui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 935
container_issue 3
container_start_page 911
container_title Acta geotechnica
container_volume 16
creator Zhang, Shiping
Pak, Ronald Y. S.
Zhang, Junhui
description Studies associated with dynamic plate–medium interactions generally assumed the plate structures to be permeable for the sake of convenience. But the effect and applicability of such an assumption are still unclear, and then the pore fluid pressure on the plate and medium interfaces cannot be obtained. In this paper, the mentioned problems are discussed by studying the coupling steady-state vibration of an impermeable, rigid, circular plate resting on a finite, fluid-saturated, poroelastic soil layer underlain by rigid base and subjected to a vertical time-harmonic loading. The semi-analytical solutions for the dynamic compliance, displacements, stresses, especially the contact stress including effective stress and pore fluid pressure of the plate and the layer, are proposed. In developing these solutions, the linearly poroelastic model established by de Boer is used to describe the mechanical behaviour of the porous medium. By means of four scalar displacement potentials and the Fourier–Hankel transformation to solve the equations of motion of the poroelastic layer, and then imposing boundary and interfacial conditions, a pair of coupling Fredholm’s integral equations of the second kind formulating the plate–medium interaction are derived and evaluated with numerical methods. The proposed solutions are then verified by comparing with the existing special solutions and the FEM calculation results. Numerical examples are also performed to examine the effects of the permeability of both the plate and the poroelastic layer and the thickness of the layer on the dynamic response of the coupling system.
doi_str_mv 10.1007/s11440-020-01067-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2495701498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2495701498</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-1b099f9be8090dda8481a0d5ffe86367c40bbcef6f9598a6765b867e431a062d3</originalsourceid><addsrcrecordid>eNp9kM1KxDAURoMoOI6-gKuA26kmbZqmSxn8gwE36jakaTJmSJt60wpufHYzVnTnIiSQc757-RA6p-SSElJdRUoZIxnJ06GEV5k4QAsqOM0oLYrD33deHqOTGHeE8CJnfIE-XwyMTiuPR9eZ7FVBF3qnsQ7T4F2_xe-uATW60ONgseqx6wYDnVGNNysMbuvaFdYO9OQV4MGr0WAwcdyryVHYut6NCR0CBONV-tE4BuexVx8GTtGRVT6as597iZ5vb57W99nm8e5hfb3JVMHyMaMNqWtbN0aQmrStEkxQRdrSWiN4wSvNSNNoY7mty1ooXvGyEbwyrEgYz9tiiS7m3AHC25T2k7swQZ9GypzVZUUoq0Wi8pnSEGIEY-UArlPwISmR-57l3LNMPcvvnuVeKmYpJrjfGviL_sf6AuXPgfo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2495701498</pqid></control><display><type>article</type><title>Vertical time-harmonic coupling vibration of an impermeable, rigid, circular plate resting on a finite, poroelastic soil layer</title><source>Springer Nature - Complete Springer Journals</source><creator>Zhang, Shiping ; Pak, Ronald Y. S. ; Zhang, Junhui</creator><creatorcontrib>Zhang, Shiping ; Pak, Ronald Y. S. ; Zhang, Junhui</creatorcontrib><description>Studies associated with dynamic plate–medium interactions generally assumed the plate structures to be permeable for the sake of convenience. But the effect and applicability of such an assumption are still unclear, and then the pore fluid pressure on the plate and medium interfaces cannot be obtained. In this paper, the mentioned problems are discussed by studying the coupling steady-state vibration of an impermeable, rigid, circular plate resting on a finite, fluid-saturated, poroelastic soil layer underlain by rigid base and subjected to a vertical time-harmonic loading. The semi-analytical solutions for the dynamic compliance, displacements, stresses, especially the contact stress including effective stress and pore fluid pressure of the plate and the layer, are proposed. In developing these solutions, the linearly poroelastic model established by de Boer is used to describe the mechanical behaviour of the porous medium. By means of four scalar displacement potentials and the Fourier–Hankel transformation to solve the equations of motion of the poroelastic layer, and then imposing boundary and interfacial conditions, a pair of coupling Fredholm’s integral equations of the second kind formulating the plate–medium interaction are derived and evaluated with numerical methods. The proposed solutions are then verified by comparing with the existing special solutions and the FEM calculation results. Numerical examples are also performed to examine the effects of the permeability of both the plate and the poroelastic layer and the thickness of the layer on the dynamic response of the coupling system.</description><identifier>ISSN: 1861-1125</identifier><identifier>EISSN: 1861-1133</identifier><identifier>DOI: 10.1007/s11440-020-01067-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Circular plates ; Complex Fluids and Microfluidics ; Contact pressure ; Contact stresses ; Coupling ; Dynamic response ; Engineering ; Equations of motion ; Exact solutions ; Finite element method ; Fluid pressure ; Foundations ; Geoengineering ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydraulics ; Integral equations ; Interfaces ; Mathematical models ; Mechanical properties ; Numerical methods ; Permeability ; Porous media ; Research Paper ; Saturated soils ; Soft and Granular Matter ; Soil ; Soil dynamics ; Soil layers ; Soil permeability ; Soil Science &amp; Conservation ; Soils ; Solid Mechanics ; Thickness ; Vertical loads ; Vibration</subject><ispartof>Acta geotechnica, 2021-03, Vol.16 (3), p.911-935</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-1b099f9be8090dda8481a0d5ffe86367c40bbcef6f9598a6765b867e431a062d3</citedby><cites>FETCH-LOGICAL-a342t-1b099f9be8090dda8481a0d5ffe86367c40bbcef6f9598a6765b867e431a062d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11440-020-01067-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11440-020-01067-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Zhang, Shiping</creatorcontrib><creatorcontrib>Pak, Ronald Y. S.</creatorcontrib><creatorcontrib>Zhang, Junhui</creatorcontrib><title>Vertical time-harmonic coupling vibration of an impermeable, rigid, circular plate resting on a finite, poroelastic soil layer</title><title>Acta geotechnica</title><addtitle>Acta Geotech</addtitle><description>Studies associated with dynamic plate–medium interactions generally assumed the plate structures to be permeable for the sake of convenience. But the effect and applicability of such an assumption are still unclear, and then the pore fluid pressure on the plate and medium interfaces cannot be obtained. In this paper, the mentioned problems are discussed by studying the coupling steady-state vibration of an impermeable, rigid, circular plate resting on a finite, fluid-saturated, poroelastic soil layer underlain by rigid base and subjected to a vertical time-harmonic loading. The semi-analytical solutions for the dynamic compliance, displacements, stresses, especially the contact stress including effective stress and pore fluid pressure of the plate and the layer, are proposed. In developing these solutions, the linearly poroelastic model established by de Boer is used to describe the mechanical behaviour of the porous medium. By means of four scalar displacement potentials and the Fourier–Hankel transformation to solve the equations of motion of the poroelastic layer, and then imposing boundary and interfacial conditions, a pair of coupling Fredholm’s integral equations of the second kind formulating the plate–medium interaction are derived and evaluated with numerical methods. The proposed solutions are then verified by comparing with the existing special solutions and the FEM calculation results. Numerical examples are also performed to examine the effects of the permeability of both the plate and the poroelastic layer and the thickness of the layer on the dynamic response of the coupling system.</description><subject>Circular plates</subject><subject>Complex Fluids and Microfluidics</subject><subject>Contact pressure</subject><subject>Contact stresses</subject><subject>Coupling</subject><subject>Dynamic response</subject><subject>Engineering</subject><subject>Equations of motion</subject><subject>Exact solutions</subject><subject>Finite element method</subject><subject>Fluid pressure</subject><subject>Foundations</subject><subject>Geoengineering</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydraulics</subject><subject>Integral equations</subject><subject>Interfaces</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Numerical methods</subject><subject>Permeability</subject><subject>Porous media</subject><subject>Research Paper</subject><subject>Saturated soils</subject><subject>Soft and Granular Matter</subject><subject>Soil</subject><subject>Soil dynamics</subject><subject>Soil layers</subject><subject>Soil permeability</subject><subject>Soil Science &amp; Conservation</subject><subject>Soils</subject><subject>Solid Mechanics</subject><subject>Thickness</subject><subject>Vertical loads</subject><subject>Vibration</subject><issn>1861-1125</issn><issn>1861-1133</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM1KxDAURoMoOI6-gKuA26kmbZqmSxn8gwE36jakaTJmSJt60wpufHYzVnTnIiSQc757-RA6p-SSElJdRUoZIxnJ06GEV5k4QAsqOM0oLYrD33deHqOTGHeE8CJnfIE-XwyMTiuPR9eZ7FVBF3qnsQ7T4F2_xe-uATW60ONgseqx6wYDnVGNNysMbuvaFdYO9OQV4MGr0WAwcdyryVHYut6NCR0CBONV-tE4BuexVx8GTtGRVT6as597iZ5vb57W99nm8e5hfb3JVMHyMaMNqWtbN0aQmrStEkxQRdrSWiN4wSvNSNNoY7mty1ooXvGyEbwyrEgYz9tiiS7m3AHC25T2k7swQZ9GypzVZUUoq0Wi8pnSEGIEY-UArlPwISmR-57l3LNMPcvvnuVeKmYpJrjfGviL_sf6AuXPgfo</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Zhang, Shiping</creator><creator>Pak, Ronald Y. S.</creator><creator>Zhang, Junhui</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20210301</creationdate><title>Vertical time-harmonic coupling vibration of an impermeable, rigid, circular plate resting on a finite, poroelastic soil layer</title><author>Zhang, Shiping ; Pak, Ronald Y. S. ; Zhang, Junhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-1b099f9be8090dda8481a0d5ffe86367c40bbcef6f9598a6765b867e431a062d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Circular plates</topic><topic>Complex Fluids and Microfluidics</topic><topic>Contact pressure</topic><topic>Contact stresses</topic><topic>Coupling</topic><topic>Dynamic response</topic><topic>Engineering</topic><topic>Equations of motion</topic><topic>Exact solutions</topic><topic>Finite element method</topic><topic>Fluid pressure</topic><topic>Foundations</topic><topic>Geoengineering</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydraulics</topic><topic>Integral equations</topic><topic>Interfaces</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Numerical methods</topic><topic>Permeability</topic><topic>Porous media</topic><topic>Research Paper</topic><topic>Saturated soils</topic><topic>Soft and Granular Matter</topic><topic>Soil</topic><topic>Soil dynamics</topic><topic>Soil layers</topic><topic>Soil permeability</topic><topic>Soil Science &amp; Conservation</topic><topic>Soils</topic><topic>Solid Mechanics</topic><topic>Thickness</topic><topic>Vertical loads</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Shiping</creatorcontrib><creatorcontrib>Pak, Ronald Y. S.</creatorcontrib><creatorcontrib>Zhang, Junhui</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta geotechnica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Shiping</au><au>Pak, Ronald Y. S.</au><au>Zhang, Junhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vertical time-harmonic coupling vibration of an impermeable, rigid, circular plate resting on a finite, poroelastic soil layer</atitle><jtitle>Acta geotechnica</jtitle><stitle>Acta Geotech</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>16</volume><issue>3</issue><spage>911</spage><epage>935</epage><pages>911-935</pages><issn>1861-1125</issn><eissn>1861-1133</eissn><abstract>Studies associated with dynamic plate–medium interactions generally assumed the plate structures to be permeable for the sake of convenience. But the effect and applicability of such an assumption are still unclear, and then the pore fluid pressure on the plate and medium interfaces cannot be obtained. In this paper, the mentioned problems are discussed by studying the coupling steady-state vibration of an impermeable, rigid, circular plate resting on a finite, fluid-saturated, poroelastic soil layer underlain by rigid base and subjected to a vertical time-harmonic loading. The semi-analytical solutions for the dynamic compliance, displacements, stresses, especially the contact stress including effective stress and pore fluid pressure of the plate and the layer, are proposed. In developing these solutions, the linearly poroelastic model established by de Boer is used to describe the mechanical behaviour of the porous medium. By means of four scalar displacement potentials and the Fourier–Hankel transformation to solve the equations of motion of the poroelastic layer, and then imposing boundary and interfacial conditions, a pair of coupling Fredholm’s integral equations of the second kind formulating the plate–medium interaction are derived and evaluated with numerical methods. The proposed solutions are then verified by comparing with the existing special solutions and the FEM calculation results. Numerical examples are also performed to examine the effects of the permeability of both the plate and the poroelastic layer and the thickness of the layer on the dynamic response of the coupling system.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11440-020-01067-8</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1861-1125
ispartof Acta geotechnica, 2021-03, Vol.16 (3), p.911-935
issn 1861-1125
1861-1133
language eng
recordid cdi_proquest_journals_2495701498
source Springer Nature - Complete Springer Journals
subjects Circular plates
Complex Fluids and Microfluidics
Contact pressure
Contact stresses
Coupling
Dynamic response
Engineering
Equations of motion
Exact solutions
Finite element method
Fluid pressure
Foundations
Geoengineering
Geotechnical Engineering & Applied Earth Sciences
Hydraulics
Integral equations
Interfaces
Mathematical models
Mechanical properties
Numerical methods
Permeability
Porous media
Research Paper
Saturated soils
Soft and Granular Matter
Soil
Soil dynamics
Soil layers
Soil permeability
Soil Science & Conservation
Soils
Solid Mechanics
Thickness
Vertical loads
Vibration
title Vertical time-harmonic coupling vibration of an impermeable, rigid, circular plate resting on a finite, poroelastic soil layer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A58%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vertical%20time-harmonic%20coupling%20vibration%20of%20an%20impermeable,%20rigid,%20circular%20plate%20resting%20on%20a%20finite,%20poroelastic%20soil%20layer&rft.jtitle=Acta%20geotechnica&rft.au=Zhang,%20Shiping&rft.date=2021-03-01&rft.volume=16&rft.issue=3&rft.spage=911&rft.epage=935&rft.pages=911-935&rft.issn=1861-1125&rft.eissn=1861-1133&rft_id=info:doi/10.1007/s11440-020-01067-8&rft_dat=%3Cproquest_cross%3E2495701498%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2495701498&rft_id=info:pmid/&rfr_iscdi=true