Ultrafast laser-induced guided elastic waves in a freestanding aluminum membrane

Ultrafast laser-induced guided acoustic waves in thin, freely suspended films are important for many applications adopting the laser-ultrasonics technique. These waves show unique dispersion relations, leading to minimal propagation losses and acoustic energy confinement. While this principle has be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2021-02, Vol.103 (6), p.1, Article 064303
Hauptverfasser: Zhang, Hao, Antoncecchi, Alessandro, Edward, Stephen, Planken, Paul, Witte, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 1
container_title Physical review. B
container_volume 103
creator Zhang, Hao
Antoncecchi, Alessandro
Edward, Stephen
Planken, Paul
Witte, Stefan
description Ultrafast laser-induced guided acoustic waves in thin, freely suspended films are important for many applications adopting the laser-ultrasonics technique. These waves show unique dispersion relations, leading to minimal propagation losses and acoustic energy confinement. While this principle has been known, the separation of various physical effects in the formation of measured signals involving these guided acoustic waves has not been clearly elaborated. Here, we present a combined experimental and theoretical study on all-optical excitation and detection of these waves in a thin, freestanding aluminum membrane. The acoustic dynamics is excited and measured by using a femtosecond time-resolved pump-probe technique with controlled probing position, enabling spatially resolved detection. The measured signals are compared with an advanced numerical model that we developed earlier [H. Zhang et al., Phys. Rev. Appl. 13, 014010 (2020)], showing excellent agreement. The combination of experiment and simulation allows us to decode various physical effects in the signal formation, including different acoustic field components. Unknown material properties, such as acoustic attenuation coefficients, and the two complex photoelastic constants are quantitatively retrieved by fitting the measured signals. Furthermore, we provide evidence of nonlinear propagation of the excited guided acoustic waves.
doi_str_mv 10.1103/PhysRevB.103.064303
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2495506132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2495506132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-3f2f236f5d65d0cd9c82aaaf59f5f3f4cc98aabb7606793ba5a30f17a704ce7e3</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWGo_gZeA562zySbbHLWoFQoWsecwmz81ZXdbk91Kv71bqp7evOEx8_gRcpvDNM-B368-j-ndHR6ng5mCLDjwCzJihVSZUlJd_s8CrskkpS0A5BJUCWpEVuu6i-gxdbTG5GIWWtsbZ-mmD3YQN2y7YOg3HlyioaVIfXQuddja0G4o1n0T2r6hjWuqiK27IVce6-Qmvzom6-enj_kiW769vM4flpnhjHUZ98wzLr2wUlgwVpkZQ0QvlBee-8IYNUOsqlKCLBWvUCAHn5dYQmFc6fiY3J3v7uPuqx8K6e2uj-3wUrNCCQEy52xI8XPKxF1K0Xm9j6HBeNQ56BM9_UdPn8yZHv8B3DRlrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2495506132</pqid></control><display><type>article</type><title>Ultrafast laser-induced guided elastic waves in a freestanding aluminum membrane</title><source>American Physical Society Journals</source><creator>Zhang, Hao ; Antoncecchi, Alessandro ; Edward, Stephen ; Planken, Paul ; Witte, Stefan</creator><creatorcontrib>Zhang, Hao ; Antoncecchi, Alessandro ; Edward, Stephen ; Planken, Paul ; Witte, Stefan</creatorcontrib><description>Ultrafast laser-induced guided acoustic waves in thin, freely suspended films are important for many applications adopting the laser-ultrasonics technique. These waves show unique dispersion relations, leading to minimal propagation losses and acoustic energy confinement. While this principle has been known, the separation of various physical effects in the formation of measured signals involving these guided acoustic waves has not been clearly elaborated. Here, we present a combined experimental and theoretical study on all-optical excitation and detection of these waves in a thin, freestanding aluminum membrane. The acoustic dynamics is excited and measured by using a femtosecond time-resolved pump-probe technique with controlled probing position, enabling spatially resolved detection. The measured signals are compared with an advanced numerical model that we developed earlier [H. Zhang et al., Phys. Rev. Appl. 13, 014010 (2020)], showing excellent agreement. The combination of experiment and simulation allows us to decode various physical effects in the signal formation, including different acoustic field components. Unknown material properties, such as acoustic attenuation coefficients, and the two complex photoelastic constants are quantitatively retrieved by fitting the measured signals. Furthermore, we provide evidence of nonlinear propagation of the excited guided acoustic waves.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.103.064303</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Acoustic attenuation ; Acoustic propagation ; Acoustic properties ; Acoustic waves ; Acoustics ; Aluminum ; Attenuation coefficients ; Elastic waves ; Lasers ; Material properties ; Membranes ; Numerical models ; Position measurement ; Thin films ; Ultrafast lasers ; Ultrasonics ; Wave propagation</subject><ispartof>Physical review. B, 2021-02, Vol.103 (6), p.1, Article 064303</ispartof><rights>Copyright American Physical Society Feb 1, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-3f2f236f5d65d0cd9c82aaaf59f5f3f4cc98aabb7606793ba5a30f17a704ce7e3</citedby><cites>FETCH-LOGICAL-c322t-3f2f236f5d65d0cd9c82aaaf59f5f3f4cc98aabb7606793ba5a30f17a704ce7e3</cites><orcidid>0000-0003-1268-8028 ; 0000-0002-1899-4395 ; 0000-0001-7789-7248</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Antoncecchi, Alessandro</creatorcontrib><creatorcontrib>Edward, Stephen</creatorcontrib><creatorcontrib>Planken, Paul</creatorcontrib><creatorcontrib>Witte, Stefan</creatorcontrib><title>Ultrafast laser-induced guided elastic waves in a freestanding aluminum membrane</title><title>Physical review. B</title><description>Ultrafast laser-induced guided acoustic waves in thin, freely suspended films are important for many applications adopting the laser-ultrasonics technique. These waves show unique dispersion relations, leading to minimal propagation losses and acoustic energy confinement. While this principle has been known, the separation of various physical effects in the formation of measured signals involving these guided acoustic waves has not been clearly elaborated. Here, we present a combined experimental and theoretical study on all-optical excitation and detection of these waves in a thin, freestanding aluminum membrane. The acoustic dynamics is excited and measured by using a femtosecond time-resolved pump-probe technique with controlled probing position, enabling spatially resolved detection. The measured signals are compared with an advanced numerical model that we developed earlier [H. Zhang et al., Phys. Rev. Appl. 13, 014010 (2020)], showing excellent agreement. The combination of experiment and simulation allows us to decode various physical effects in the signal formation, including different acoustic field components. Unknown material properties, such as acoustic attenuation coefficients, and the two complex photoelastic constants are quantitatively retrieved by fitting the measured signals. Furthermore, we provide evidence of nonlinear propagation of the excited guided acoustic waves.</description><subject>Acoustic attenuation</subject><subject>Acoustic propagation</subject><subject>Acoustic properties</subject><subject>Acoustic waves</subject><subject>Acoustics</subject><subject>Aluminum</subject><subject>Attenuation coefficients</subject><subject>Elastic waves</subject><subject>Lasers</subject><subject>Material properties</subject><subject>Membranes</subject><subject>Numerical models</subject><subject>Position measurement</subject><subject>Thin films</subject><subject>Ultrafast lasers</subject><subject>Ultrasonics</subject><subject>Wave propagation</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE9LAzEQxYMoWGo_gZeA562zySbbHLWoFQoWsecwmz81ZXdbk91Kv71bqp7evOEx8_gRcpvDNM-B368-j-ndHR6ng5mCLDjwCzJihVSZUlJd_s8CrskkpS0A5BJUCWpEVuu6i-gxdbTG5GIWWtsbZ-mmD3YQN2y7YOg3HlyioaVIfXQuddja0G4o1n0T2r6hjWuqiK27IVce6-Qmvzom6-enj_kiW769vM4flpnhjHUZ98wzLr2wUlgwVpkZQ0QvlBee-8IYNUOsqlKCLBWvUCAHn5dYQmFc6fiY3J3v7uPuqx8K6e2uj-3wUrNCCQEy52xI8XPKxF1K0Xm9j6HBeNQ56BM9_UdPn8yZHv8B3DRlrQ</recordid><startdate>20210204</startdate><enddate>20210204</enddate><creator>Zhang, Hao</creator><creator>Antoncecchi, Alessandro</creator><creator>Edward, Stephen</creator><creator>Planken, Paul</creator><creator>Witte, Stefan</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1268-8028</orcidid><orcidid>https://orcid.org/0000-0002-1899-4395</orcidid><orcidid>https://orcid.org/0000-0001-7789-7248</orcidid></search><sort><creationdate>20210204</creationdate><title>Ultrafast laser-induced guided elastic waves in a freestanding aluminum membrane</title><author>Zhang, Hao ; Antoncecchi, Alessandro ; Edward, Stephen ; Planken, Paul ; Witte, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-3f2f236f5d65d0cd9c82aaaf59f5f3f4cc98aabb7606793ba5a30f17a704ce7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acoustic attenuation</topic><topic>Acoustic propagation</topic><topic>Acoustic properties</topic><topic>Acoustic waves</topic><topic>Acoustics</topic><topic>Aluminum</topic><topic>Attenuation coefficients</topic><topic>Elastic waves</topic><topic>Lasers</topic><topic>Material properties</topic><topic>Membranes</topic><topic>Numerical models</topic><topic>Position measurement</topic><topic>Thin films</topic><topic>Ultrafast lasers</topic><topic>Ultrasonics</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Antoncecchi, Alessandro</creatorcontrib><creatorcontrib>Edward, Stephen</creatorcontrib><creatorcontrib>Planken, Paul</creatorcontrib><creatorcontrib>Witte, Stefan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Hao</au><au>Antoncecchi, Alessandro</au><au>Edward, Stephen</au><au>Planken, Paul</au><au>Witte, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafast laser-induced guided elastic waves in a freestanding aluminum membrane</atitle><jtitle>Physical review. B</jtitle><date>2021-02-04</date><risdate>2021</risdate><volume>103</volume><issue>6</issue><spage>1</spage><pages>1-</pages><artnum>064303</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Ultrafast laser-induced guided acoustic waves in thin, freely suspended films are important for many applications adopting the laser-ultrasonics technique. These waves show unique dispersion relations, leading to minimal propagation losses and acoustic energy confinement. While this principle has been known, the separation of various physical effects in the formation of measured signals involving these guided acoustic waves has not been clearly elaborated. Here, we present a combined experimental and theoretical study on all-optical excitation and detection of these waves in a thin, freestanding aluminum membrane. The acoustic dynamics is excited and measured by using a femtosecond time-resolved pump-probe technique with controlled probing position, enabling spatially resolved detection. The measured signals are compared with an advanced numerical model that we developed earlier [H. Zhang et al., Phys. Rev. Appl. 13, 014010 (2020)], showing excellent agreement. The combination of experiment and simulation allows us to decode various physical effects in the signal formation, including different acoustic field components. Unknown material properties, such as acoustic attenuation coefficients, and the two complex photoelastic constants are quantitatively retrieved by fitting the measured signals. Furthermore, we provide evidence of nonlinear propagation of the excited guided acoustic waves.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.103.064303</doi><orcidid>https://orcid.org/0000-0003-1268-8028</orcidid><orcidid>https://orcid.org/0000-0002-1899-4395</orcidid><orcidid>https://orcid.org/0000-0001-7789-7248</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2021-02, Vol.103 (6), p.1, Article 064303
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2495506132
source American Physical Society Journals
subjects Acoustic attenuation
Acoustic propagation
Acoustic properties
Acoustic waves
Acoustics
Aluminum
Attenuation coefficients
Elastic waves
Lasers
Material properties
Membranes
Numerical models
Position measurement
Thin films
Ultrafast lasers
Ultrasonics
Wave propagation
title Ultrafast laser-induced guided elastic waves in a freestanding aluminum membrane
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T06%3A04%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafast%20laser-induced%20guided%20elastic%20waves%20in%20a%20freestanding%20aluminum%20membrane&rft.jtitle=Physical%20review.%20B&rft.au=Zhang,%20Hao&rft.date=2021-02-04&rft.volume=103&rft.issue=6&rft.spage=1&rft.pages=1-&rft.artnum=064303&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.103.064303&rft_dat=%3Cproquest_cross%3E2495506132%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2495506132&rft_id=info:pmid/&rfr_iscdi=true