Rigidity of topological invariants to symmetry breaking
Symmetry plays an important role in the topological band theory to remedy the eigenstates' gauge obstruction at the cost of a symmetry anomaly and zero-energy boundary modes. One can also make use of the symmetry to enumerate the topological invariants-giving a symmetry classification table. He...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2021-02, Vol.103 (7), p.1, Article 075139 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | 1 |
container_title | Physical review. B |
container_volume | 103 |
creator | Raj, Arpit Banerjee, Nepal Das, Tanmoy |
description | Symmetry plays an important role in the topological band theory to remedy the eigenstates' gauge obstruction at the cost of a symmetry anomaly and zero-energy boundary modes. One can also make use of the symmetry to enumerate the topological invariants-giving a symmetry classification table. Here we consider various topological phases protected by different symmetries and examine how the corresponding topological invariants evolve once the protecting symmetry is spontaneously lost. To our surprise, we find that the topological invariants and edge states can sometimes be robust to symmetry-breaking quantum orders. This topological robustness persists as long as the mean-field Hamiltonian in a symmetry-breaking ordered phase maintains its adiabatic continuity to the noninteracting Hamiltonian. For example, for a time-reversal symmetric topological phase in 2+1 dimensions, we show that the Z2 time-reversal polarization continues to be a good topological invariant even after including distinct time-reversal breaking order parameters. Similar conclusions are drawn for various other symmetry-breaking cases. Finally, we discuss that the change in the internal symmetry associated with the spontaneous symmetry breaking has to be accounted for to reinstate the topological invariants into the expected classification table. |
doi_str_mv | 10.1103/PhysRevB.103.075139 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2495502277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2495502277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-9f5892008e9ab9157fd6589774b938aaba73f88a14c858a5316bf878fe764d0f3</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOOY-gS8Fn1tvmqbJfdThPxgoQ59D2iUzc21q0g367e2o-nTPORzugR8h1xQySoHdvn0OcW2O99loMhCcMjwjs7woMUUs8fxfc7gkixh3AEBLQAE4I2Lttm7j-iHxNul95_d-62q9T1x71MHpto9jnMShaUwfhqQKRn-5dntFLqzeR7P4vXPy8fjwvnxOV69PL8u7VVrnQvQpWi4xB5AGdYWUC7spx0SIokImta60YFZKTYtacqk5o2VlpZDWiLLYgGVzcjP97YL_PpjYq50_hHacVHmBnEM-7owtNrXq4GMMxqouuEaHQVFQJ0jqD5I6mQkS-wFvuFt6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2495502277</pqid></control><display><type>article</type><title>Rigidity of topological invariants to symmetry breaking</title><source>American Physical Society Journals</source><creator>Raj, Arpit ; Banerjee, Nepal ; Das, Tanmoy</creator><creatorcontrib>Raj, Arpit ; Banerjee, Nepal ; Das, Tanmoy</creatorcontrib><description>Symmetry plays an important role in the topological band theory to remedy the eigenstates' gauge obstruction at the cost of a symmetry anomaly and zero-energy boundary modes. One can also make use of the symmetry to enumerate the topological invariants-giving a symmetry classification table. Here we consider various topological phases protected by different symmetries and examine how the corresponding topological invariants evolve once the protecting symmetry is spontaneously lost. To our surprise, we find that the topological invariants and edge states can sometimes be robust to symmetry-breaking quantum orders. This topological robustness persists as long as the mean-field Hamiltonian in a symmetry-breaking ordered phase maintains its adiabatic continuity to the noninteracting Hamiltonian. For example, for a time-reversal symmetric topological phase in 2+1 dimensions, we show that the Z2 time-reversal polarization continues to be a good topological invariant even after including distinct time-reversal breaking order parameters. Similar conclusions are drawn for various other symmetry-breaking cases. Finally, we discuss that the change in the internal symmetry associated with the spontaneous symmetry breaking has to be accounted for to reinstate the topological invariants into the expected classification table.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.103.075139</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Band theory ; Broken symmetry ; Classification ; Eigenvectors ; Invariants ; Order parameters ; Symmetry ; Topology</subject><ispartof>Physical review. B, 2021-02, Vol.103 (7), p.1, Article 075139</ispartof><rights>Copyright American Physical Society Feb 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-9f5892008e9ab9157fd6589774b938aaba73f88a14c858a5316bf878fe764d0f3</citedby><cites>FETCH-LOGICAL-c277t-9f5892008e9ab9157fd6589774b938aaba73f88a14c858a5316bf878fe764d0f3</cites><orcidid>0000-0002-2532-1340 ; 0000-0003-1881-9164</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,2865,2866,27907,27908</link.rule.ids></links><search><creatorcontrib>Raj, Arpit</creatorcontrib><creatorcontrib>Banerjee, Nepal</creatorcontrib><creatorcontrib>Das, Tanmoy</creatorcontrib><title>Rigidity of topological invariants to symmetry breaking</title><title>Physical review. B</title><description>Symmetry plays an important role in the topological band theory to remedy the eigenstates' gauge obstruction at the cost of a symmetry anomaly and zero-energy boundary modes. One can also make use of the symmetry to enumerate the topological invariants-giving a symmetry classification table. Here we consider various topological phases protected by different symmetries and examine how the corresponding topological invariants evolve once the protecting symmetry is spontaneously lost. To our surprise, we find that the topological invariants and edge states can sometimes be robust to symmetry-breaking quantum orders. This topological robustness persists as long as the mean-field Hamiltonian in a symmetry-breaking ordered phase maintains its adiabatic continuity to the noninteracting Hamiltonian. For example, for a time-reversal symmetric topological phase in 2+1 dimensions, we show that the Z2 time-reversal polarization continues to be a good topological invariant even after including distinct time-reversal breaking order parameters. Similar conclusions are drawn for various other symmetry-breaking cases. Finally, we discuss that the change in the internal symmetry associated with the spontaneous symmetry breaking has to be accounted for to reinstate the topological invariants into the expected classification table.</description><subject>Band theory</subject><subject>Broken symmetry</subject><subject>Classification</subject><subject>Eigenvectors</subject><subject>Invariants</subject><subject>Order parameters</subject><subject>Symmetry</subject><subject>Topology</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kF9LwzAUxYMoOOY-gS8Fn1tvmqbJfdThPxgoQ59D2iUzc21q0g367e2o-nTPORzugR8h1xQySoHdvn0OcW2O99loMhCcMjwjs7woMUUs8fxfc7gkixh3AEBLQAE4I2Lttm7j-iHxNul95_d-62q9T1x71MHpto9jnMShaUwfhqQKRn-5dntFLqzeR7P4vXPy8fjwvnxOV69PL8u7VVrnQvQpWi4xB5AGdYWUC7spx0SIokImta60YFZKTYtacqk5o2VlpZDWiLLYgGVzcjP97YL_PpjYq50_hHacVHmBnEM-7owtNrXq4GMMxqouuEaHQVFQJ0jqD5I6mQkS-wFvuFt6</recordid><startdate>20210222</startdate><enddate>20210222</enddate><creator>Raj, Arpit</creator><creator>Banerjee, Nepal</creator><creator>Das, Tanmoy</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2532-1340</orcidid><orcidid>https://orcid.org/0000-0003-1881-9164</orcidid></search><sort><creationdate>20210222</creationdate><title>Rigidity of topological invariants to symmetry breaking</title><author>Raj, Arpit ; Banerjee, Nepal ; Das, Tanmoy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-9f5892008e9ab9157fd6589774b938aaba73f88a14c858a5316bf878fe764d0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Band theory</topic><topic>Broken symmetry</topic><topic>Classification</topic><topic>Eigenvectors</topic><topic>Invariants</topic><topic>Order parameters</topic><topic>Symmetry</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raj, Arpit</creatorcontrib><creatorcontrib>Banerjee, Nepal</creatorcontrib><creatorcontrib>Das, Tanmoy</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raj, Arpit</au><au>Banerjee, Nepal</au><au>Das, Tanmoy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rigidity of topological invariants to symmetry breaking</atitle><jtitle>Physical review. B</jtitle><date>2021-02-22</date><risdate>2021</risdate><volume>103</volume><issue>7</issue><spage>1</spage><pages>1-</pages><artnum>075139</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Symmetry plays an important role in the topological band theory to remedy the eigenstates' gauge obstruction at the cost of a symmetry anomaly and zero-energy boundary modes. One can also make use of the symmetry to enumerate the topological invariants-giving a symmetry classification table. Here we consider various topological phases protected by different symmetries and examine how the corresponding topological invariants evolve once the protecting symmetry is spontaneously lost. To our surprise, we find that the topological invariants and edge states can sometimes be robust to symmetry-breaking quantum orders. This topological robustness persists as long as the mean-field Hamiltonian in a symmetry-breaking ordered phase maintains its adiabatic continuity to the noninteracting Hamiltonian. For example, for a time-reversal symmetric topological phase in 2+1 dimensions, we show that the Z2 time-reversal polarization continues to be a good topological invariant even after including distinct time-reversal breaking order parameters. Similar conclusions are drawn for various other symmetry-breaking cases. Finally, we discuss that the change in the internal symmetry associated with the spontaneous symmetry breaking has to be accounted for to reinstate the topological invariants into the expected classification table.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.103.075139</doi><orcidid>https://orcid.org/0000-0002-2532-1340</orcidid><orcidid>https://orcid.org/0000-0003-1881-9164</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2021-02, Vol.103 (7), p.1, Article 075139 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_proquest_journals_2495502277 |
source | American Physical Society Journals |
subjects | Band theory Broken symmetry Classification Eigenvectors Invariants Order parameters Symmetry Topology |
title | Rigidity of topological invariants to symmetry breaking |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A43%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rigidity%20of%20topological%20invariants%20to%20symmetry%20breaking&rft.jtitle=Physical%20review.%20B&rft.au=Raj,%20Arpit&rft.date=2021-02-22&rft.volume=103&rft.issue=7&rft.spage=1&rft.pages=1-&rft.artnum=075139&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.103.075139&rft_dat=%3Cproquest_cross%3E2495502277%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2495502277&rft_id=info:pmid/&rfr_iscdi=true |