Rigidity of topological invariants to symmetry breaking

Symmetry plays an important role in the topological band theory to remedy the eigenstates' gauge obstruction at the cost of a symmetry anomaly and zero-energy boundary modes. One can also make use of the symmetry to enumerate the topological invariants-giving a symmetry classification table. He...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2021-02, Vol.103 (7), p.1, Article 075139
Hauptverfasser: Raj, Arpit, Banerjee, Nepal, Das, Tanmoy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 1
container_title Physical review. B
container_volume 103
creator Raj, Arpit
Banerjee, Nepal
Das, Tanmoy
description Symmetry plays an important role in the topological band theory to remedy the eigenstates' gauge obstruction at the cost of a symmetry anomaly and zero-energy boundary modes. One can also make use of the symmetry to enumerate the topological invariants-giving a symmetry classification table. Here we consider various topological phases protected by different symmetries and examine how the corresponding topological invariants evolve once the protecting symmetry is spontaneously lost. To our surprise, we find that the topological invariants and edge states can sometimes be robust to symmetry-breaking quantum orders. This topological robustness persists as long as the mean-field Hamiltonian in a symmetry-breaking ordered phase maintains its adiabatic continuity to the noninteracting Hamiltonian. For example, for a time-reversal symmetric topological phase in 2+1 dimensions, we show that the Z2 time-reversal polarization continues to be a good topological invariant even after including distinct time-reversal breaking order parameters. Similar conclusions are drawn for various other symmetry-breaking cases. Finally, we discuss that the change in the internal symmetry associated with the spontaneous symmetry breaking has to be accounted for to reinstate the topological invariants into the expected classification table.
doi_str_mv 10.1103/PhysRevB.103.075139
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2495502277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2495502277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-9f5892008e9ab9157fd6589774b938aaba73f88a14c858a5316bf878fe764d0f3</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOOY-gS8Fn1tvmqbJfdThPxgoQ59D2iUzc21q0g367e2o-nTPORzugR8h1xQySoHdvn0OcW2O99loMhCcMjwjs7woMUUs8fxfc7gkixh3AEBLQAE4I2Lttm7j-iHxNul95_d-62q9T1x71MHpto9jnMShaUwfhqQKRn-5dntFLqzeR7P4vXPy8fjwvnxOV69PL8u7VVrnQvQpWi4xB5AGdYWUC7spx0SIokImta60YFZKTYtacqk5o2VlpZDWiLLYgGVzcjP97YL_PpjYq50_hHacVHmBnEM-7owtNrXq4GMMxqouuEaHQVFQJ0jqD5I6mQkS-wFvuFt6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2495502277</pqid></control><display><type>article</type><title>Rigidity of topological invariants to symmetry breaking</title><source>American Physical Society Journals</source><creator>Raj, Arpit ; Banerjee, Nepal ; Das, Tanmoy</creator><creatorcontrib>Raj, Arpit ; Banerjee, Nepal ; Das, Tanmoy</creatorcontrib><description>Symmetry plays an important role in the topological band theory to remedy the eigenstates' gauge obstruction at the cost of a symmetry anomaly and zero-energy boundary modes. One can also make use of the symmetry to enumerate the topological invariants-giving a symmetry classification table. Here we consider various topological phases protected by different symmetries and examine how the corresponding topological invariants evolve once the protecting symmetry is spontaneously lost. To our surprise, we find that the topological invariants and edge states can sometimes be robust to symmetry-breaking quantum orders. This topological robustness persists as long as the mean-field Hamiltonian in a symmetry-breaking ordered phase maintains its adiabatic continuity to the noninteracting Hamiltonian. For example, for a time-reversal symmetric topological phase in 2+1 dimensions, we show that the Z2 time-reversal polarization continues to be a good topological invariant even after including distinct time-reversal breaking order parameters. Similar conclusions are drawn for various other symmetry-breaking cases. Finally, we discuss that the change in the internal symmetry associated with the spontaneous symmetry breaking has to be accounted for to reinstate the topological invariants into the expected classification table.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.103.075139</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Band theory ; Broken symmetry ; Classification ; Eigenvectors ; Invariants ; Order parameters ; Symmetry ; Topology</subject><ispartof>Physical review. B, 2021-02, Vol.103 (7), p.1, Article 075139</ispartof><rights>Copyright American Physical Society Feb 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-9f5892008e9ab9157fd6589774b938aaba73f88a14c858a5316bf878fe764d0f3</citedby><cites>FETCH-LOGICAL-c277t-9f5892008e9ab9157fd6589774b938aaba73f88a14c858a5316bf878fe764d0f3</cites><orcidid>0000-0002-2532-1340 ; 0000-0003-1881-9164</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,2865,2866,27907,27908</link.rule.ids></links><search><creatorcontrib>Raj, Arpit</creatorcontrib><creatorcontrib>Banerjee, Nepal</creatorcontrib><creatorcontrib>Das, Tanmoy</creatorcontrib><title>Rigidity of topological invariants to symmetry breaking</title><title>Physical review. B</title><description>Symmetry plays an important role in the topological band theory to remedy the eigenstates' gauge obstruction at the cost of a symmetry anomaly and zero-energy boundary modes. One can also make use of the symmetry to enumerate the topological invariants-giving a symmetry classification table. Here we consider various topological phases protected by different symmetries and examine how the corresponding topological invariants evolve once the protecting symmetry is spontaneously lost. To our surprise, we find that the topological invariants and edge states can sometimes be robust to symmetry-breaking quantum orders. This topological robustness persists as long as the mean-field Hamiltonian in a symmetry-breaking ordered phase maintains its adiabatic continuity to the noninteracting Hamiltonian. For example, for a time-reversal symmetric topological phase in 2+1 dimensions, we show that the Z2 time-reversal polarization continues to be a good topological invariant even after including distinct time-reversal breaking order parameters. Similar conclusions are drawn for various other symmetry-breaking cases. Finally, we discuss that the change in the internal symmetry associated with the spontaneous symmetry breaking has to be accounted for to reinstate the topological invariants into the expected classification table.</description><subject>Band theory</subject><subject>Broken symmetry</subject><subject>Classification</subject><subject>Eigenvectors</subject><subject>Invariants</subject><subject>Order parameters</subject><subject>Symmetry</subject><subject>Topology</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kF9LwzAUxYMoOOY-gS8Fn1tvmqbJfdThPxgoQ59D2iUzc21q0g367e2o-nTPORzugR8h1xQySoHdvn0OcW2O99loMhCcMjwjs7woMUUs8fxfc7gkixh3AEBLQAE4I2Lttm7j-iHxNul95_d-62q9T1x71MHpto9jnMShaUwfhqQKRn-5dntFLqzeR7P4vXPy8fjwvnxOV69PL8u7VVrnQvQpWi4xB5AGdYWUC7spx0SIokImta60YFZKTYtacqk5o2VlpZDWiLLYgGVzcjP97YL_PpjYq50_hHacVHmBnEM-7owtNrXq4GMMxqouuEaHQVFQJ0jqD5I6mQkS-wFvuFt6</recordid><startdate>20210222</startdate><enddate>20210222</enddate><creator>Raj, Arpit</creator><creator>Banerjee, Nepal</creator><creator>Das, Tanmoy</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2532-1340</orcidid><orcidid>https://orcid.org/0000-0003-1881-9164</orcidid></search><sort><creationdate>20210222</creationdate><title>Rigidity of topological invariants to symmetry breaking</title><author>Raj, Arpit ; Banerjee, Nepal ; Das, Tanmoy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-9f5892008e9ab9157fd6589774b938aaba73f88a14c858a5316bf878fe764d0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Band theory</topic><topic>Broken symmetry</topic><topic>Classification</topic><topic>Eigenvectors</topic><topic>Invariants</topic><topic>Order parameters</topic><topic>Symmetry</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raj, Arpit</creatorcontrib><creatorcontrib>Banerjee, Nepal</creatorcontrib><creatorcontrib>Das, Tanmoy</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raj, Arpit</au><au>Banerjee, Nepal</au><au>Das, Tanmoy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rigidity of topological invariants to symmetry breaking</atitle><jtitle>Physical review. B</jtitle><date>2021-02-22</date><risdate>2021</risdate><volume>103</volume><issue>7</issue><spage>1</spage><pages>1-</pages><artnum>075139</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Symmetry plays an important role in the topological band theory to remedy the eigenstates' gauge obstruction at the cost of a symmetry anomaly and zero-energy boundary modes. One can also make use of the symmetry to enumerate the topological invariants-giving a symmetry classification table. Here we consider various topological phases protected by different symmetries and examine how the corresponding topological invariants evolve once the protecting symmetry is spontaneously lost. To our surprise, we find that the topological invariants and edge states can sometimes be robust to symmetry-breaking quantum orders. This topological robustness persists as long as the mean-field Hamiltonian in a symmetry-breaking ordered phase maintains its adiabatic continuity to the noninteracting Hamiltonian. For example, for a time-reversal symmetric topological phase in 2+1 dimensions, we show that the Z2 time-reversal polarization continues to be a good topological invariant even after including distinct time-reversal breaking order parameters. Similar conclusions are drawn for various other symmetry-breaking cases. Finally, we discuss that the change in the internal symmetry associated with the spontaneous symmetry breaking has to be accounted for to reinstate the topological invariants into the expected classification table.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.103.075139</doi><orcidid>https://orcid.org/0000-0002-2532-1340</orcidid><orcidid>https://orcid.org/0000-0003-1881-9164</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2021-02, Vol.103 (7), p.1, Article 075139
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2495502277
source American Physical Society Journals
subjects Band theory
Broken symmetry
Classification
Eigenvectors
Invariants
Order parameters
Symmetry
Topology
title Rigidity of topological invariants to symmetry breaking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A43%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rigidity%20of%20topological%20invariants%20to%20symmetry%20breaking&rft.jtitle=Physical%20review.%20B&rft.au=Raj,%20Arpit&rft.date=2021-02-22&rft.volume=103&rft.issue=7&rft.spage=1&rft.pages=1-&rft.artnum=075139&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.103.075139&rft_dat=%3Cproquest_cross%3E2495502277%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2495502277&rft_id=info:pmid/&rfr_iscdi=true