Integrability and Braided Tensor Categories
Many integrable statistical mechanical models possess a fractional-spin conserved current. Such currents have been constructed by utilising quantum-group algebras and ideas from “discrete holomorphicity”. I find them naturally and much more generally using a braided tensor category, a topological st...
Gespeichert in:
Veröffentlicht in: | Journal of statistical physics 2021-02, Vol.182 (2), Article 43 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Journal of statistical physics |
container_volume | 182 |
creator | Fendley, Paul |
description | Many integrable statistical mechanical models possess a fractional-spin conserved current. Such currents have been constructed by utilising quantum-group algebras and ideas from “discrete holomorphicity”. I find them naturally and much more generally using a braided tensor category, a topological structure arising in knot invariants, anyons and conformal field theory. I derive a simple constraint on the Boltzmann weights admitting a conserved current, generalising one found using quantum-group algebras. The resulting trigonometric weights are typically those of a critical integrable lattice model, so the method here gives a linear way of “Baxterising”, i.e. building a solution of the Yang-Baxter equation out of topological data. It also illuminates why many models do not admit a solution. I discuss many examples in geometric and local models, including (perhaps) a new solution. |
doi_str_mv | 10.1007/s10955-021-02712-6 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2495450981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A652303355</galeid><sourcerecordid>A652303355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-27710726ccd153030556c52d76509db5dc0e1e51473a0e19c96ea5e02f59a4bb3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWD_-gKcFj7J1kuwkzbEWPwoFL_Ucskm2pLTZmmwP_fdGV_AmwzDD8D4zw0vIHYUpBZCPmYJCrIHRkpKyWpyRCUXJaiUoPycTAMbqRlK8JFc5bwFAzRROyMMyDn6TTBt2YThVJrrqKZngvKvWPuY-VQtTBH0KPt-Qi87ssr_9rdfk4-V5vXirV--vy8V8VVuOs6FmUlKQTFjrKHLggCgsMicFgnItOgueeqSN5KZ0yirhDXpgHSrTtC2_Jvfj3kPqP48-D3rbH1MsJzVrFDZlzYwW1XRUbczO6xC7fkjGlnB-H2wffRfKfC6QlR84YgHYCNjU55x8pw8p7E06aQr620U9uqiLi_rHRS0KxEcoF3Hc-PT3yz_UF9YVciY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2495450981</pqid></control><display><type>article</type><title>Integrability and Braided Tensor Categories</title><source>SpringerLink Journals - AutoHoldings</source><creator>Fendley, Paul</creator><creatorcontrib>Fendley, Paul</creatorcontrib><description>Many integrable statistical mechanical models possess a fractional-spin conserved current. Such currents have been constructed by utilising quantum-group algebras and ideas from “discrete holomorphicity”. I find them naturally and much more generally using a braided tensor category, a topological structure arising in knot invariants, anyons and conformal field theory. I derive a simple constraint on the Boltzmann weights admitting a conserved current, generalising one found using quantum-group algebras. The resulting trigonometric weights are typically those of a critical integrable lattice model, so the method here gives a linear way of “Baxterising”, i.e. building a solution of the Yang-Baxter equation out of topological data. It also illuminates why many models do not admit a solution. I discuss many examples in geometric and local models, including (perhaps) a new solution.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-021-02712-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Analysis ; Braiding ; Field theory ; Mathematical analysis ; Mathematical and Computational Physics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Statistical Physics and Dynamical Systems ; Tensors ; Theoretical ; Topology</subject><ispartof>Journal of statistical physics, 2021-02, Vol.182 (2), Article 43</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-27710726ccd153030556c52d76509db5dc0e1e51473a0e19c96ea5e02f59a4bb3</citedby><cites>FETCH-LOGICAL-c358t-27710726ccd153030556c52d76509db5dc0e1e51473a0e19c96ea5e02f59a4bb3</cites><orcidid>0000-0002-7747-0153</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10955-021-02712-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10955-021-02712-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Fendley, Paul</creatorcontrib><title>Integrability and Braided Tensor Categories</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>Many integrable statistical mechanical models possess a fractional-spin conserved current. Such currents have been constructed by utilising quantum-group algebras and ideas from “discrete holomorphicity”. I find them naturally and much more generally using a braided tensor category, a topological structure arising in knot invariants, anyons and conformal field theory. I derive a simple constraint on the Boltzmann weights admitting a conserved current, generalising one found using quantum-group algebras. The resulting trigonometric weights are typically those of a critical integrable lattice model, so the method here gives a linear way of “Baxterising”, i.e. building a solution of the Yang-Baxter equation out of topological data. It also illuminates why many models do not admit a solution. I discuss many examples in geometric and local models, including (perhaps) a new solution.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Braiding</subject><subject>Field theory</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Tensors</subject><subject>Theoretical</subject><subject>Topology</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWD_-gKcFj7J1kuwkzbEWPwoFL_Ucskm2pLTZmmwP_fdGV_AmwzDD8D4zw0vIHYUpBZCPmYJCrIHRkpKyWpyRCUXJaiUoPycTAMbqRlK8JFc5bwFAzRROyMMyDn6TTBt2YThVJrrqKZngvKvWPuY-VQtTBH0KPt-Qi87ssr_9rdfk4-V5vXirV--vy8V8VVuOs6FmUlKQTFjrKHLggCgsMicFgnItOgueeqSN5KZ0yirhDXpgHSrTtC2_Jvfj3kPqP48-D3rbH1MsJzVrFDZlzYwW1XRUbczO6xC7fkjGlnB-H2wffRfKfC6QlR84YgHYCNjU55x8pw8p7E06aQr620U9uqiLi_rHRS0KxEcoF3Hc-PT3yz_UF9YVciY</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Fendley, Paul</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7747-0153</orcidid></search><sort><creationdate>20210201</creationdate><title>Integrability and Braided Tensor Categories</title><author>Fendley, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-27710726ccd153030556c52d76509db5dc0e1e51473a0e19c96ea5e02f59a4bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Braiding</topic><topic>Field theory</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Tensors</topic><topic>Theoretical</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fendley, Paul</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fendley, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrability and Braided Tensor Categories</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>182</volume><issue>2</issue><artnum>43</artnum><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>Many integrable statistical mechanical models possess a fractional-spin conserved current. Such currents have been constructed by utilising quantum-group algebras and ideas from “discrete holomorphicity”. I find them naturally and much more generally using a braided tensor category, a topological structure arising in knot invariants, anyons and conformal field theory. I derive a simple constraint on the Boltzmann weights admitting a conserved current, generalising one found using quantum-group algebras. The resulting trigonometric weights are typically those of a critical integrable lattice model, so the method here gives a linear way of “Baxterising”, i.e. building a solution of the Yang-Baxter equation out of topological data. It also illuminates why many models do not admit a solution. I discuss many examples in geometric and local models, including (perhaps) a new solution.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10955-021-02712-6</doi><orcidid>https://orcid.org/0000-0002-7747-0153</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4715 |
ispartof | Journal of statistical physics, 2021-02, Vol.182 (2), Article 43 |
issn | 0022-4715 1572-9613 |
language | eng |
recordid | cdi_proquest_journals_2495450981 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algebra Analysis Braiding Field theory Mathematical analysis Mathematical and Computational Physics Physical Chemistry Physics Physics and Astronomy Quantum Physics Statistical Physics and Dynamical Systems Tensors Theoretical Topology |
title | Integrability and Braided Tensor Categories |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A43%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrability%20and%20Braided%20Tensor%20Categories&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Fendley,%20Paul&rft.date=2021-02-01&rft.volume=182&rft.issue=2&rft.artnum=43&rft.issn=0022-4715&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-021-02712-6&rft_dat=%3Cgale_proqu%3EA652303355%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2495450981&rft_id=info:pmid/&rft_galeid=A652303355&rfr_iscdi=true |