Integrability and Braided Tensor Categories

Many integrable statistical mechanical models possess a fractional-spin conserved current. Such currents have been constructed by utilising quantum-group algebras and ideas from “discrete holomorphicity”. I find them naturally and much more generally using a braided tensor category, a topological st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical physics 2021-02, Vol.182 (2), Article 43
1. Verfasser: Fendley, Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Journal of statistical physics
container_volume 182
creator Fendley, Paul
description Many integrable statistical mechanical models possess a fractional-spin conserved current. Such currents have been constructed by utilising quantum-group algebras and ideas from “discrete holomorphicity”. I find them naturally and much more generally using a braided tensor category, a topological structure arising in knot invariants, anyons and conformal field theory. I derive a simple constraint on the Boltzmann weights admitting a conserved current, generalising one found using quantum-group algebras. The resulting trigonometric weights are typically those of a critical integrable lattice model, so the method here gives a linear way of “Baxterising”, i.e. building a solution of the Yang-Baxter equation out of topological data. It also illuminates why many models do not admit a solution. I discuss many examples in geometric and local models, including (perhaps) a new solution.
doi_str_mv 10.1007/s10955-021-02712-6
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2495450981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A652303355</galeid><sourcerecordid>A652303355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-27710726ccd153030556c52d76509db5dc0e1e51473a0e19c96ea5e02f59a4bb3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWD_-gKcFj7J1kuwkzbEWPwoFL_Ucskm2pLTZmmwP_fdGV_AmwzDD8D4zw0vIHYUpBZCPmYJCrIHRkpKyWpyRCUXJaiUoPycTAMbqRlK8JFc5bwFAzRROyMMyDn6TTBt2YThVJrrqKZngvKvWPuY-VQtTBH0KPt-Qi87ssr_9rdfk4-V5vXirV--vy8V8VVuOs6FmUlKQTFjrKHLggCgsMicFgnItOgueeqSN5KZ0yirhDXpgHSrTtC2_Jvfj3kPqP48-D3rbH1MsJzVrFDZlzYwW1XRUbczO6xC7fkjGlnB-H2wffRfKfC6QlR84YgHYCNjU55x8pw8p7E06aQr620U9uqiLi_rHRS0KxEcoF3Hc-PT3yz_UF9YVciY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2495450981</pqid></control><display><type>article</type><title>Integrability and Braided Tensor Categories</title><source>SpringerLink Journals - AutoHoldings</source><creator>Fendley, Paul</creator><creatorcontrib>Fendley, Paul</creatorcontrib><description>Many integrable statistical mechanical models possess a fractional-spin conserved current. Such currents have been constructed by utilising quantum-group algebras and ideas from “discrete holomorphicity”. I find them naturally and much more generally using a braided tensor category, a topological structure arising in knot invariants, anyons and conformal field theory. I derive a simple constraint on the Boltzmann weights admitting a conserved current, generalising one found using quantum-group algebras. The resulting trigonometric weights are typically those of a critical integrable lattice model, so the method here gives a linear way of “Baxterising”, i.e. building a solution of the Yang-Baxter equation out of topological data. It also illuminates why many models do not admit a solution. I discuss many examples in geometric and local models, including (perhaps) a new solution.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-021-02712-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Analysis ; Braiding ; Field theory ; Mathematical analysis ; Mathematical and Computational Physics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Statistical Physics and Dynamical Systems ; Tensors ; Theoretical ; Topology</subject><ispartof>Journal of statistical physics, 2021-02, Vol.182 (2), Article 43</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-27710726ccd153030556c52d76509db5dc0e1e51473a0e19c96ea5e02f59a4bb3</citedby><cites>FETCH-LOGICAL-c358t-27710726ccd153030556c52d76509db5dc0e1e51473a0e19c96ea5e02f59a4bb3</cites><orcidid>0000-0002-7747-0153</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10955-021-02712-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10955-021-02712-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Fendley, Paul</creatorcontrib><title>Integrability and Braided Tensor Categories</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>Many integrable statistical mechanical models possess a fractional-spin conserved current. Such currents have been constructed by utilising quantum-group algebras and ideas from “discrete holomorphicity”. I find them naturally and much more generally using a braided tensor category, a topological structure arising in knot invariants, anyons and conformal field theory. I derive a simple constraint on the Boltzmann weights admitting a conserved current, generalising one found using quantum-group algebras. The resulting trigonometric weights are typically those of a critical integrable lattice model, so the method here gives a linear way of “Baxterising”, i.e. building a solution of the Yang-Baxter equation out of topological data. It also illuminates why many models do not admit a solution. I discuss many examples in geometric and local models, including (perhaps) a new solution.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Braiding</subject><subject>Field theory</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Tensors</subject><subject>Theoretical</subject><subject>Topology</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWD_-gKcFj7J1kuwkzbEWPwoFL_Ucskm2pLTZmmwP_fdGV_AmwzDD8D4zw0vIHYUpBZCPmYJCrIHRkpKyWpyRCUXJaiUoPycTAMbqRlK8JFc5bwFAzRROyMMyDn6TTBt2YThVJrrqKZngvKvWPuY-VQtTBH0KPt-Qi87ssr_9rdfk4-V5vXirV--vy8V8VVuOs6FmUlKQTFjrKHLggCgsMicFgnItOgueeqSN5KZ0yirhDXpgHSrTtC2_Jvfj3kPqP48-D3rbH1MsJzVrFDZlzYwW1XRUbczO6xC7fkjGlnB-H2wffRfKfC6QlR84YgHYCNjU55x8pw8p7E06aQr620U9uqiLi_rHRS0KxEcoF3Hc-PT3yz_UF9YVciY</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Fendley, Paul</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7747-0153</orcidid></search><sort><creationdate>20210201</creationdate><title>Integrability and Braided Tensor Categories</title><author>Fendley, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-27710726ccd153030556c52d76509db5dc0e1e51473a0e19c96ea5e02f59a4bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Braiding</topic><topic>Field theory</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Tensors</topic><topic>Theoretical</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fendley, Paul</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fendley, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrability and Braided Tensor Categories</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>182</volume><issue>2</issue><artnum>43</artnum><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>Many integrable statistical mechanical models possess a fractional-spin conserved current. Such currents have been constructed by utilising quantum-group algebras and ideas from “discrete holomorphicity”. I find them naturally and much more generally using a braided tensor category, a topological structure arising in knot invariants, anyons and conformal field theory. I derive a simple constraint on the Boltzmann weights admitting a conserved current, generalising one found using quantum-group algebras. The resulting trigonometric weights are typically those of a critical integrable lattice model, so the method here gives a linear way of “Baxterising”, i.e. building a solution of the Yang-Baxter equation out of topological data. It also illuminates why many models do not admit a solution. I discuss many examples in geometric and local models, including (perhaps) a new solution.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10955-021-02712-6</doi><orcidid>https://orcid.org/0000-0002-7747-0153</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-4715
ispartof Journal of statistical physics, 2021-02, Vol.182 (2), Article 43
issn 0022-4715
1572-9613
language eng
recordid cdi_proquest_journals_2495450981
source SpringerLink Journals - AutoHoldings
subjects Algebra
Analysis
Braiding
Field theory
Mathematical analysis
Mathematical and Computational Physics
Physical Chemistry
Physics
Physics and Astronomy
Quantum Physics
Statistical Physics and Dynamical Systems
Tensors
Theoretical
Topology
title Integrability and Braided Tensor Categories
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A43%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrability%20and%20Braided%20Tensor%20Categories&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Fendley,%20Paul&rft.date=2021-02-01&rft.volume=182&rft.issue=2&rft.artnum=43&rft.issn=0022-4715&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-021-02712-6&rft_dat=%3Cgale_proqu%3EA652303355%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2495450981&rft_id=info:pmid/&rft_galeid=A652303355&rfr_iscdi=true