Tunable, Grating‐Gated, Graphene‐On‐Polyimide Terahertz Modulators
An electrically switchable graphene terahertz (THz) modulator with a tunable‐by‐design optical bandwidth is presented and it is exploited to compensate the cavity dispersion of a quantum cascade laser (QCL). Electrostatic gating is achieved by a metal grating used as a gate electrode, with an HfO2/A...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2021-03, Vol.31 (10), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 31 |
creator | Di Gaspare, Alessandra Pogna, Eva Arianna Aurelia Salemi, Luca Balci, Osman Cadore, Alisson Ronieri Shinde, Sachin Maruti Li, Lianhe Franco, Cinzia Davies, Alexander Giles Linfield, Edmund Harold Ferrari, Andrea Carlo Scamarcio, Gaetano Vitiello, Miriam Serena |
description | An electrically switchable graphene terahertz (THz) modulator with a tunable‐by‐design optical bandwidth is presented and it is exploited to compensate the cavity dispersion of a quantum cascade laser (QCL). Electrostatic gating is achieved by a metal grating used as a gate electrode, with an HfO2/AlOx gate dielectric on top. This is patterned on a polyimide layer, which acts as a quarter wave resonance cavity, coupled with an Au reflector underneath. The authors achieve 90% modulation depth of the intensity, combined with a 20 kHz electrical bandwidth in the 1.9–2.7 THz range. The modulator is then integrated with a multimode THz QCL. By adjusting the modulator operational bandwidth, the authors demonstrate that the graphene modulator can partially compensate the QCL cavity dispersion, resulting in an integrated laser behaving as a stable frequency comb over 35% of the operational range, with 98 equidistant optical modes and a spectral coverage ~1.2 THz. This paves the way for applications in the terahertz, such as tunable transformation‐optics devices, active photonic components, adaptive and quantum optics, and metrological tools for spectroscopy at THz frequencies.
An electrically tunable graphene modulator for terahertz (THz) applications is presented. The modulator design, comprising a grating gated graphene on a polyimide quarter wave waveguide, shows a high degree of tenability and optimum modulation efficiency, and acts as an efficient dispersion compensator for quantum cascade THz frequency combs. The device concept can be extended to alternative photonic applications, paving the way to novel applications in quantum optics. |
doi_str_mv | 10.1002/adfm.202008039 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2495331326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2495331326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3579-9477b85d7a82427f8f47b379d4e1a0308200035a3a8a0621bfd2b5f1202ec8b63</originalsourceid><addsrcrecordid>eNqFUMFOwkAQ3RhNRPTqmcSrxdndtrs9EpRiAsEDJt42U3ZXSkqLu20InvwEv9EvsYjBo5eZyct782YeIdcU-hSA3aG26z4DBiCBJyekQ2MaBxyYPD3O9OWcXHi_AqBC8LBDxvOmxKwwt73UYZ2Xr18fnynWRv8Am6UpTYvMyrY8VcUuX-fa9ObG4dK4-r03rXRTYF05f0nOLBbeXP32LnkePcyH42AySx-Hg0mw4JFIgiQUIpORFihZyISVNhQZF4kODUXgINvzgUfIUSLEjGZWsyyytP3LLGQW8y65OezduOqtMb5Wq6pxZWupWJhEnFPO9qz-gbVwlffOWLVx-RrdTlFQ-7TUPi11TKsVJAfBNi_M7h-2GtyPpn_ab5sWb6E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2495331326</pqid></control><display><type>article</type><title>Tunable, Grating‐Gated, Graphene‐On‐Polyimide Terahertz Modulators</title><source>Wiley Online Library All Journals</source><creator>Di Gaspare, Alessandra ; Pogna, Eva Arianna Aurelia ; Salemi, Luca ; Balci, Osman ; Cadore, Alisson Ronieri ; Shinde, Sachin Maruti ; Li, Lianhe ; Franco, Cinzia ; Davies, Alexander Giles ; Linfield, Edmund Harold ; Ferrari, Andrea Carlo ; Scamarcio, Gaetano ; Vitiello, Miriam Serena</creator><creatorcontrib>Di Gaspare, Alessandra ; Pogna, Eva Arianna Aurelia ; Salemi, Luca ; Balci, Osman ; Cadore, Alisson Ronieri ; Shinde, Sachin Maruti ; Li, Lianhe ; Franco, Cinzia ; Davies, Alexander Giles ; Linfield, Edmund Harold ; Ferrari, Andrea Carlo ; Scamarcio, Gaetano ; Vitiello, Miriam Serena</creatorcontrib><description>An electrically switchable graphene terahertz (THz) modulator with a tunable‐by‐design optical bandwidth is presented and it is exploited to compensate the cavity dispersion of a quantum cascade laser (QCL). Electrostatic gating is achieved by a metal grating used as a gate electrode, with an HfO2/AlOx gate dielectric on top. This is patterned on a polyimide layer, which acts as a quarter wave resonance cavity, coupled with an Au reflector underneath. The authors achieve 90% modulation depth of the intensity, combined with a 20 kHz electrical bandwidth in the 1.9–2.7 THz range. The modulator is then integrated with a multimode THz QCL. By adjusting the modulator operational bandwidth, the authors demonstrate that the graphene modulator can partially compensate the QCL cavity dispersion, resulting in an integrated laser behaving as a stable frequency comb over 35% of the operational range, with 98 equidistant optical modes and a spectral coverage ~1.2 THz. This paves the way for applications in the terahertz, such as tunable transformation‐optics devices, active photonic components, adaptive and quantum optics, and metrological tools for spectroscopy at THz frequencies.
An electrically tunable graphene modulator for terahertz (THz) applications is presented. The modulator design, comprising a grating gated graphene on a polyimide quarter wave waveguide, shows a high degree of tenability and optimum modulation efficiency, and acts as an efficient dispersion compensator for quantum cascade THz frequency combs. The device concept can be extended to alternative photonic applications, paving the way to novel applications in quantum optics.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202008039</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Adaptive control ; Adaptive optics ; Bandwidths ; Graphene ; Materials science ; Modulators ; Optics ; polyimide waveguides ; Quantum cascade lasers ; Quantum optics ; Terahertz frequencies</subject><ispartof>Advanced functional materials, 2021-03, Vol.31 (10), p.n/a</ispartof><rights>2020 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3579-9477b85d7a82427f8f47b379d4e1a0308200035a3a8a0621bfd2b5f1202ec8b63</citedby><cites>FETCH-LOGICAL-c3579-9477b85d7a82427f8f47b379d4e1a0308200035a3a8a0621bfd2b5f1202ec8b63</cites><orcidid>0000-0002-4914-0421</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202008039$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202008039$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Di Gaspare, Alessandra</creatorcontrib><creatorcontrib>Pogna, Eva Arianna Aurelia</creatorcontrib><creatorcontrib>Salemi, Luca</creatorcontrib><creatorcontrib>Balci, Osman</creatorcontrib><creatorcontrib>Cadore, Alisson Ronieri</creatorcontrib><creatorcontrib>Shinde, Sachin Maruti</creatorcontrib><creatorcontrib>Li, Lianhe</creatorcontrib><creatorcontrib>Franco, Cinzia</creatorcontrib><creatorcontrib>Davies, Alexander Giles</creatorcontrib><creatorcontrib>Linfield, Edmund Harold</creatorcontrib><creatorcontrib>Ferrari, Andrea Carlo</creatorcontrib><creatorcontrib>Scamarcio, Gaetano</creatorcontrib><creatorcontrib>Vitiello, Miriam Serena</creatorcontrib><title>Tunable, Grating‐Gated, Graphene‐On‐Polyimide Terahertz Modulators</title><title>Advanced functional materials</title><description>An electrically switchable graphene terahertz (THz) modulator with a tunable‐by‐design optical bandwidth is presented and it is exploited to compensate the cavity dispersion of a quantum cascade laser (QCL). Electrostatic gating is achieved by a metal grating used as a gate electrode, with an HfO2/AlOx gate dielectric on top. This is patterned on a polyimide layer, which acts as a quarter wave resonance cavity, coupled with an Au reflector underneath. The authors achieve 90% modulation depth of the intensity, combined with a 20 kHz electrical bandwidth in the 1.9–2.7 THz range. The modulator is then integrated with a multimode THz QCL. By adjusting the modulator operational bandwidth, the authors demonstrate that the graphene modulator can partially compensate the QCL cavity dispersion, resulting in an integrated laser behaving as a stable frequency comb over 35% of the operational range, with 98 equidistant optical modes and a spectral coverage ~1.2 THz. This paves the way for applications in the terahertz, such as tunable transformation‐optics devices, active photonic components, adaptive and quantum optics, and metrological tools for spectroscopy at THz frequencies.
An electrically tunable graphene modulator for terahertz (THz) applications is presented. The modulator design, comprising a grating gated graphene on a polyimide quarter wave waveguide, shows a high degree of tenability and optimum modulation efficiency, and acts as an efficient dispersion compensator for quantum cascade THz frequency combs. The device concept can be extended to alternative photonic applications, paving the way to novel applications in quantum optics.</description><subject>Adaptive control</subject><subject>Adaptive optics</subject><subject>Bandwidths</subject><subject>Graphene</subject><subject>Materials science</subject><subject>Modulators</subject><subject>Optics</subject><subject>polyimide waveguides</subject><subject>Quantum cascade lasers</subject><subject>Quantum optics</subject><subject>Terahertz frequencies</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFUMFOwkAQ3RhNRPTqmcSrxdndtrs9EpRiAsEDJt42U3ZXSkqLu20InvwEv9EvsYjBo5eZyct782YeIdcU-hSA3aG26z4DBiCBJyekQ2MaBxyYPD3O9OWcXHi_AqBC8LBDxvOmxKwwt73UYZ2Xr18fnynWRv8Am6UpTYvMyrY8VcUuX-fa9ObG4dK4-r03rXRTYF05f0nOLBbeXP32LnkePcyH42AySx-Hg0mw4JFIgiQUIpORFihZyISVNhQZF4kODUXgINvzgUfIUSLEjGZWsyyytP3LLGQW8y65OezduOqtMb5Wq6pxZWupWJhEnFPO9qz-gbVwlffOWLVx-RrdTlFQ-7TUPi11TKsVJAfBNi_M7h-2GtyPpn_ab5sWb6E</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Di Gaspare, Alessandra</creator><creator>Pogna, Eva Arianna Aurelia</creator><creator>Salemi, Luca</creator><creator>Balci, Osman</creator><creator>Cadore, Alisson Ronieri</creator><creator>Shinde, Sachin Maruti</creator><creator>Li, Lianhe</creator><creator>Franco, Cinzia</creator><creator>Davies, Alexander Giles</creator><creator>Linfield, Edmund Harold</creator><creator>Ferrari, Andrea Carlo</creator><creator>Scamarcio, Gaetano</creator><creator>Vitiello, Miriam Serena</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4914-0421</orcidid></search><sort><creationdate>20210301</creationdate><title>Tunable, Grating‐Gated, Graphene‐On‐Polyimide Terahertz Modulators</title><author>Di Gaspare, Alessandra ; Pogna, Eva Arianna Aurelia ; Salemi, Luca ; Balci, Osman ; Cadore, Alisson Ronieri ; Shinde, Sachin Maruti ; Li, Lianhe ; Franco, Cinzia ; Davies, Alexander Giles ; Linfield, Edmund Harold ; Ferrari, Andrea Carlo ; Scamarcio, Gaetano ; Vitiello, Miriam Serena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3579-9477b85d7a82427f8f47b379d4e1a0308200035a3a8a0621bfd2b5f1202ec8b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive control</topic><topic>Adaptive optics</topic><topic>Bandwidths</topic><topic>Graphene</topic><topic>Materials science</topic><topic>Modulators</topic><topic>Optics</topic><topic>polyimide waveguides</topic><topic>Quantum cascade lasers</topic><topic>Quantum optics</topic><topic>Terahertz frequencies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Gaspare, Alessandra</creatorcontrib><creatorcontrib>Pogna, Eva Arianna Aurelia</creatorcontrib><creatorcontrib>Salemi, Luca</creatorcontrib><creatorcontrib>Balci, Osman</creatorcontrib><creatorcontrib>Cadore, Alisson Ronieri</creatorcontrib><creatorcontrib>Shinde, Sachin Maruti</creatorcontrib><creatorcontrib>Li, Lianhe</creatorcontrib><creatorcontrib>Franco, Cinzia</creatorcontrib><creatorcontrib>Davies, Alexander Giles</creatorcontrib><creatorcontrib>Linfield, Edmund Harold</creatorcontrib><creatorcontrib>Ferrari, Andrea Carlo</creatorcontrib><creatorcontrib>Scamarcio, Gaetano</creatorcontrib><creatorcontrib>Vitiello, Miriam Serena</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Gaspare, Alessandra</au><au>Pogna, Eva Arianna Aurelia</au><au>Salemi, Luca</au><au>Balci, Osman</au><au>Cadore, Alisson Ronieri</au><au>Shinde, Sachin Maruti</au><au>Li, Lianhe</au><au>Franco, Cinzia</au><au>Davies, Alexander Giles</au><au>Linfield, Edmund Harold</au><au>Ferrari, Andrea Carlo</au><au>Scamarcio, Gaetano</au><au>Vitiello, Miriam Serena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunable, Grating‐Gated, Graphene‐On‐Polyimide Terahertz Modulators</atitle><jtitle>Advanced functional materials</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>31</volume><issue>10</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>An electrically switchable graphene terahertz (THz) modulator with a tunable‐by‐design optical bandwidth is presented and it is exploited to compensate the cavity dispersion of a quantum cascade laser (QCL). Electrostatic gating is achieved by a metal grating used as a gate electrode, with an HfO2/AlOx gate dielectric on top. This is patterned on a polyimide layer, which acts as a quarter wave resonance cavity, coupled with an Au reflector underneath. The authors achieve 90% modulation depth of the intensity, combined with a 20 kHz electrical bandwidth in the 1.9–2.7 THz range. The modulator is then integrated with a multimode THz QCL. By adjusting the modulator operational bandwidth, the authors demonstrate that the graphene modulator can partially compensate the QCL cavity dispersion, resulting in an integrated laser behaving as a stable frequency comb over 35% of the operational range, with 98 equidistant optical modes and a spectral coverage ~1.2 THz. This paves the way for applications in the terahertz, such as tunable transformation‐optics devices, active photonic components, adaptive and quantum optics, and metrological tools for spectroscopy at THz frequencies.
An electrically tunable graphene modulator for terahertz (THz) applications is presented. The modulator design, comprising a grating gated graphene on a polyimide quarter wave waveguide, shows a high degree of tenability and optimum modulation efficiency, and acts as an efficient dispersion compensator for quantum cascade THz frequency combs. The device concept can be extended to alternative photonic applications, paving the way to novel applications in quantum optics.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202008039</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4914-0421</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2021-03, Vol.31 (10), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2495331326 |
source | Wiley Online Library All Journals |
subjects | Adaptive control Adaptive optics Bandwidths Graphene Materials science Modulators Optics polyimide waveguides Quantum cascade lasers Quantum optics Terahertz frequencies |
title | Tunable, Grating‐Gated, Graphene‐On‐Polyimide Terahertz Modulators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T02%3A30%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunable,%20Grating%E2%80%90Gated,%20Graphene%E2%80%90On%E2%80%90Polyimide%20Terahertz%20Modulators&rft.jtitle=Advanced%20functional%20materials&rft.au=Di%20Gaspare,%20Alessandra&rft.date=2021-03-01&rft.volume=31&rft.issue=10&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202008039&rft_dat=%3Cproquest_cross%3E2495331326%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2495331326&rft_id=info:pmid/&rfr_iscdi=true |