Simultaneously Crafting Single‐Atomic Fe Sites and Graphitic Layer‐Wrapped Fe3C Nanoparticles Encapsulated within Mesoporous Carbon Tubes for Oxygen Reduction
The rational design and facile synthesis of 1D hollow tubular carbon‐based materials with highly efficient oxygen reduction reaction (ORR) performance remains a challenge. Herein, a simple yet robust route is employed to simultaneously craft single‐atomic Fe sites and graphitic layer‐wrapped Fe3C na...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2021-03, Vol.31 (10), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 31 |
creator | Cui, Xun Gao, Likun Lei, Sheng Liang, Shuang Zhang, Jiawei Sewell, Christopher D. Xue, Wendan Liu, Qian Lin, Zhiqun Yang, Yingkui |
description | The rational design and facile synthesis of 1D hollow tubular carbon‐based materials with highly efficient oxygen reduction reaction (ORR) performance remains a challenge. Herein, a simple yet robust route is employed to simultaneously craft single‐atomic Fe sites and graphitic layer‐wrapped Fe3C nanoparticles (Fe3C@GL NPs) encapsulated within 1D N‐doped hollow mesoporous carbon tubes (denoted Fe‐N‐HMCTs). The successional compositional and structural crafting of the hydrothermally self‐templated polyimide tubes (PITs), enabled by Fe species incorporation and acid leaching treatment, respectively, yields Fe‐N‐HMCTs that are subsequently exploited as the ORR electrocatalyst. Remarkably, an alkaline electrolyte capitalizing on Fe‐N‐HMCTs achieves excellent ORR activity (onset potential, 0.992 V; half‐wave potential, 0.872 V), favorable long‐term stability, and strong methanol tolerance, outperforming the state‐of‐the‐art Pt/C catalyst. Such impressive ORR performances of the Fe‐N‐HMCTs originate from the favorable configuration of active sites (i.e., atomically dispersed Fe‐Nx sites and homogeneously incorporated Fe3C@GL NPs) in conjunction with the advantageous 1D hollow tubular architecture containing adequate mesoporous surface. This work offers a new view to fabricate earth‐abundant 1D Fe‐N‐C electrocatalysts with well‐designed architecture and outstanding performance for electrochemical energy conversion and storage.
A 1D Fe‐N‐codoped hollow tubular structured carbon material with adequate mesoporous surface (Fe‐N‐HMCTs) is developed to serve as an electrocatalyst toward oxygen reduction reaction (ORR). An alkaline electrolyte capitalizing on Fe‐N‐HMCTs achieves excellent ORR activity (onset potential, 0.992 V; half‐wave potential, 0.872 V), favorable long‐term stability, and strong methanol tolerance, outperforming the state‐of‐the‐art Pt/C catalyst. |
doi_str_mv | 10.1002/adfm.202009197 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2495331203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2495331203</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2707-42080106cbce41ee1599bc60a3ccda88b9aaabd9ab385f75b15b85d544878d3d3</originalsourceid><addsrcrecordid>eNo9kUtOwzAQhiMEEqWwZW2JdYsd57msQluQWirRIthF49hpXaV2cByV7DgCZ-BonARXRd3M459vZha_590SPCQY-_fAy93Qxz7GKUnjM69HIhINKPaT81NN3i-9q6bZYkzimAY972cpd21lQQndNlWHMgOllWqNli5U4vfre2T1ThZoIpxkRYNAcTQ1UG-kdfIMOmEc9eaUWnCH0Qw9g9I1GDev3MJYFVA3bQXWzffSbqRCc9HoWhv3E2VgmFZo1TLHltqgxWe3Fgq9CN4WVmp17V2UUDXi5j_3vdfJeJU9DmaL6VM2mg3WfozjQeDjBBMcFawQARGChGnKiggDLQoOScJSAGA8BUaTsIxDRkKWhDwMgiROOOW0790d79ZGf7SisflWt0a5l7kfpCGlxMfUUemR2stKdHlt5A5MlxOcH0zIDybkJxPy0cNkfuroHzF4gwM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2495331203</pqid></control><display><type>article</type><title>Simultaneously Crafting Single‐Atomic Fe Sites and Graphitic Layer‐Wrapped Fe3C Nanoparticles Encapsulated within Mesoporous Carbon Tubes for Oxygen Reduction</title><source>Access via Wiley Online Library</source><creator>Cui, Xun ; Gao, Likun ; Lei, Sheng ; Liang, Shuang ; Zhang, Jiawei ; Sewell, Christopher D. ; Xue, Wendan ; Liu, Qian ; Lin, Zhiqun ; Yang, Yingkui</creator><creatorcontrib>Cui, Xun ; Gao, Likun ; Lei, Sheng ; Liang, Shuang ; Zhang, Jiawei ; Sewell, Christopher D. ; Xue, Wendan ; Liu, Qian ; Lin, Zhiqun ; Yang, Yingkui</creatorcontrib><description>The rational design and facile synthesis of 1D hollow tubular carbon‐based materials with highly efficient oxygen reduction reaction (ORR) performance remains a challenge. Herein, a simple yet robust route is employed to simultaneously craft single‐atomic Fe sites and graphitic layer‐wrapped Fe3C nanoparticles (Fe3C@GL NPs) encapsulated within 1D N‐doped hollow mesoporous carbon tubes (denoted Fe‐N‐HMCTs). The successional compositional and structural crafting of the hydrothermally self‐templated polyimide tubes (PITs), enabled by Fe species incorporation and acid leaching treatment, respectively, yields Fe‐N‐HMCTs that are subsequently exploited as the ORR electrocatalyst. Remarkably, an alkaline electrolyte capitalizing on Fe‐N‐HMCTs achieves excellent ORR activity (onset potential, 0.992 V; half‐wave potential, 0.872 V), favorable long‐term stability, and strong methanol tolerance, outperforming the state‐of‐the‐art Pt/C catalyst. Such impressive ORR performances of the Fe‐N‐HMCTs originate from the favorable configuration of active sites (i.e., atomically dispersed Fe‐Nx sites and homogeneously incorporated Fe3C@GL NPs) in conjunction with the advantageous 1D hollow tubular architecture containing adequate mesoporous surface. This work offers a new view to fabricate earth‐abundant 1D Fe‐N‐C electrocatalysts with well‐designed architecture and outstanding performance for electrochemical energy conversion and storage.
A 1D Fe‐N‐codoped hollow tubular structured carbon material with adequate mesoporous surface (Fe‐N‐HMCTs) is developed to serve as an electrocatalyst toward oxygen reduction reaction (ORR). An alkaline electrolyte capitalizing on Fe‐N‐HMCTs achieves excellent ORR activity (onset potential, 0.992 V; half‐wave potential, 0.872 V), favorable long‐term stability, and strong methanol tolerance, outperforming the state‐of‐the‐art Pt/C catalyst.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202009197</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Acid leaching ; Carbon ; Cementite ; electrocatalysis ; Electrocatalysts ; Encapsulation ; Energy conversion ; Energy storage ; iron carbide ; Iron carbides ; Materials science ; mesoporous carbon tubes ; Nanoparticles ; oxygen reduction reaction ; Oxygen reduction reactions ; single‐atomic Fe sites ; Tubes</subject><ispartof>Advanced functional materials, 2021-03, Vol.31 (10), p.n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3158-9340</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202009197$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202009197$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Cui, Xun</creatorcontrib><creatorcontrib>Gao, Likun</creatorcontrib><creatorcontrib>Lei, Sheng</creatorcontrib><creatorcontrib>Liang, Shuang</creatorcontrib><creatorcontrib>Zhang, Jiawei</creatorcontrib><creatorcontrib>Sewell, Christopher D.</creatorcontrib><creatorcontrib>Xue, Wendan</creatorcontrib><creatorcontrib>Liu, Qian</creatorcontrib><creatorcontrib>Lin, Zhiqun</creatorcontrib><creatorcontrib>Yang, Yingkui</creatorcontrib><title>Simultaneously Crafting Single‐Atomic Fe Sites and Graphitic Layer‐Wrapped Fe3C Nanoparticles Encapsulated within Mesoporous Carbon Tubes for Oxygen Reduction</title><title>Advanced functional materials</title><description>The rational design and facile synthesis of 1D hollow tubular carbon‐based materials with highly efficient oxygen reduction reaction (ORR) performance remains a challenge. Herein, a simple yet robust route is employed to simultaneously craft single‐atomic Fe sites and graphitic layer‐wrapped Fe3C nanoparticles (Fe3C@GL NPs) encapsulated within 1D N‐doped hollow mesoporous carbon tubes (denoted Fe‐N‐HMCTs). The successional compositional and structural crafting of the hydrothermally self‐templated polyimide tubes (PITs), enabled by Fe species incorporation and acid leaching treatment, respectively, yields Fe‐N‐HMCTs that are subsequently exploited as the ORR electrocatalyst. Remarkably, an alkaline electrolyte capitalizing on Fe‐N‐HMCTs achieves excellent ORR activity (onset potential, 0.992 V; half‐wave potential, 0.872 V), favorable long‐term stability, and strong methanol tolerance, outperforming the state‐of‐the‐art Pt/C catalyst. Such impressive ORR performances of the Fe‐N‐HMCTs originate from the favorable configuration of active sites (i.e., atomically dispersed Fe‐Nx sites and homogeneously incorporated Fe3C@GL NPs) in conjunction with the advantageous 1D hollow tubular architecture containing adequate mesoporous surface. This work offers a new view to fabricate earth‐abundant 1D Fe‐N‐C electrocatalysts with well‐designed architecture and outstanding performance for electrochemical energy conversion and storage.
A 1D Fe‐N‐codoped hollow tubular structured carbon material with adequate mesoporous surface (Fe‐N‐HMCTs) is developed to serve as an electrocatalyst toward oxygen reduction reaction (ORR). An alkaline electrolyte capitalizing on Fe‐N‐HMCTs achieves excellent ORR activity (onset potential, 0.992 V; half‐wave potential, 0.872 V), favorable long‐term stability, and strong methanol tolerance, outperforming the state‐of‐the‐art Pt/C catalyst.</description><subject>Acid leaching</subject><subject>Carbon</subject><subject>Cementite</subject><subject>electrocatalysis</subject><subject>Electrocatalysts</subject><subject>Encapsulation</subject><subject>Energy conversion</subject><subject>Energy storage</subject><subject>iron carbide</subject><subject>Iron carbides</subject><subject>Materials science</subject><subject>mesoporous carbon tubes</subject><subject>Nanoparticles</subject><subject>oxygen reduction reaction</subject><subject>Oxygen reduction reactions</subject><subject>single‐atomic Fe sites</subject><subject>Tubes</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kUtOwzAQhiMEEqWwZW2JdYsd57msQluQWirRIthF49hpXaV2cByV7DgCZ-BonARXRd3M459vZha_590SPCQY-_fAy93Qxz7GKUnjM69HIhINKPaT81NN3i-9q6bZYkzimAY972cpd21lQQndNlWHMgOllWqNli5U4vfre2T1ThZoIpxkRYNAcTQ1UG-kdfIMOmEc9eaUWnCH0Qw9g9I1GDev3MJYFVA3bQXWzffSbqRCc9HoWhv3E2VgmFZo1TLHltqgxWe3Fgq9CN4WVmp17V2UUDXi5j_3vdfJeJU9DmaL6VM2mg3WfozjQeDjBBMcFawQARGChGnKiggDLQoOScJSAGA8BUaTsIxDRkKWhDwMgiROOOW0790d79ZGf7SisflWt0a5l7kfpCGlxMfUUemR2stKdHlt5A5MlxOcH0zIDybkJxPy0cNkfuroHzF4gwM</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Cui, Xun</creator><creator>Gao, Likun</creator><creator>Lei, Sheng</creator><creator>Liang, Shuang</creator><creator>Zhang, Jiawei</creator><creator>Sewell, Christopher D.</creator><creator>Xue, Wendan</creator><creator>Liu, Qian</creator><creator>Lin, Zhiqun</creator><creator>Yang, Yingkui</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3158-9340</orcidid></search><sort><creationdate>20210301</creationdate><title>Simultaneously Crafting Single‐Atomic Fe Sites and Graphitic Layer‐Wrapped Fe3C Nanoparticles Encapsulated within Mesoporous Carbon Tubes for Oxygen Reduction</title><author>Cui, Xun ; Gao, Likun ; Lei, Sheng ; Liang, Shuang ; Zhang, Jiawei ; Sewell, Christopher D. ; Xue, Wendan ; Liu, Qian ; Lin, Zhiqun ; Yang, Yingkui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2707-42080106cbce41ee1599bc60a3ccda88b9aaabd9ab385f75b15b85d544878d3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acid leaching</topic><topic>Carbon</topic><topic>Cementite</topic><topic>electrocatalysis</topic><topic>Electrocatalysts</topic><topic>Encapsulation</topic><topic>Energy conversion</topic><topic>Energy storage</topic><topic>iron carbide</topic><topic>Iron carbides</topic><topic>Materials science</topic><topic>mesoporous carbon tubes</topic><topic>Nanoparticles</topic><topic>oxygen reduction reaction</topic><topic>Oxygen reduction reactions</topic><topic>single‐atomic Fe sites</topic><topic>Tubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Xun</creatorcontrib><creatorcontrib>Gao, Likun</creatorcontrib><creatorcontrib>Lei, Sheng</creatorcontrib><creatorcontrib>Liang, Shuang</creatorcontrib><creatorcontrib>Zhang, Jiawei</creatorcontrib><creatorcontrib>Sewell, Christopher D.</creatorcontrib><creatorcontrib>Xue, Wendan</creatorcontrib><creatorcontrib>Liu, Qian</creatorcontrib><creatorcontrib>Lin, Zhiqun</creatorcontrib><creatorcontrib>Yang, Yingkui</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Xun</au><au>Gao, Likun</au><au>Lei, Sheng</au><au>Liang, Shuang</au><au>Zhang, Jiawei</au><au>Sewell, Christopher D.</au><au>Xue, Wendan</au><au>Liu, Qian</au><au>Lin, Zhiqun</au><au>Yang, Yingkui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneously Crafting Single‐Atomic Fe Sites and Graphitic Layer‐Wrapped Fe3C Nanoparticles Encapsulated within Mesoporous Carbon Tubes for Oxygen Reduction</atitle><jtitle>Advanced functional materials</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>31</volume><issue>10</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The rational design and facile synthesis of 1D hollow tubular carbon‐based materials with highly efficient oxygen reduction reaction (ORR) performance remains a challenge. Herein, a simple yet robust route is employed to simultaneously craft single‐atomic Fe sites and graphitic layer‐wrapped Fe3C nanoparticles (Fe3C@GL NPs) encapsulated within 1D N‐doped hollow mesoporous carbon tubes (denoted Fe‐N‐HMCTs). The successional compositional and structural crafting of the hydrothermally self‐templated polyimide tubes (PITs), enabled by Fe species incorporation and acid leaching treatment, respectively, yields Fe‐N‐HMCTs that are subsequently exploited as the ORR electrocatalyst. Remarkably, an alkaline electrolyte capitalizing on Fe‐N‐HMCTs achieves excellent ORR activity (onset potential, 0.992 V; half‐wave potential, 0.872 V), favorable long‐term stability, and strong methanol tolerance, outperforming the state‐of‐the‐art Pt/C catalyst. Such impressive ORR performances of the Fe‐N‐HMCTs originate from the favorable configuration of active sites (i.e., atomically dispersed Fe‐Nx sites and homogeneously incorporated Fe3C@GL NPs) in conjunction with the advantageous 1D hollow tubular architecture containing adequate mesoporous surface. This work offers a new view to fabricate earth‐abundant 1D Fe‐N‐C electrocatalysts with well‐designed architecture and outstanding performance for electrochemical energy conversion and storage.
A 1D Fe‐N‐codoped hollow tubular structured carbon material with adequate mesoporous surface (Fe‐N‐HMCTs) is developed to serve as an electrocatalyst toward oxygen reduction reaction (ORR). An alkaline electrolyte capitalizing on Fe‐N‐HMCTs achieves excellent ORR activity (onset potential, 0.992 V; half‐wave potential, 0.872 V), favorable long‐term stability, and strong methanol tolerance, outperforming the state‐of‐the‐art Pt/C catalyst.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202009197</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3158-9340</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2021-03, Vol.31 (10), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2495331203 |
source | Access via Wiley Online Library |
subjects | Acid leaching Carbon Cementite electrocatalysis Electrocatalysts Encapsulation Energy conversion Energy storage iron carbide Iron carbides Materials science mesoporous carbon tubes Nanoparticles oxygen reduction reaction Oxygen reduction reactions single‐atomic Fe sites Tubes |
title | Simultaneously Crafting Single‐Atomic Fe Sites and Graphitic Layer‐Wrapped Fe3C Nanoparticles Encapsulated within Mesoporous Carbon Tubes for Oxygen Reduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T22%3A08%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneously%20Crafting%20Single%E2%80%90Atomic%20Fe%20Sites%20and%20Graphitic%20Layer%E2%80%90Wrapped%20Fe3C%20Nanoparticles%20Encapsulated%20within%20Mesoporous%20Carbon%20Tubes%20for%20Oxygen%20Reduction&rft.jtitle=Advanced%20functional%20materials&rft.au=Cui,%20Xun&rft.date=2021-03-01&rft.volume=31&rft.issue=10&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202009197&rft_dat=%3Cproquest_wiley%3E2495331203%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2495331203&rft_id=info:pmid/&rfr_iscdi=true |