Periodic point results for Boyd-Wong contraction mappings on partial metric spaces
In this paper, we prove some periodic point results on partial metric spaces. Thus, we generalize famous results existing in the literature such as Boyd-Wong fixed point theorem and Banach fixed point theorem.
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2334 |
creator | Aslantas, Mustafa Bachay, Ali Hüssein |
description | In this paper, we prove some periodic point results on partial metric spaces. Thus, we generalize famous results existing in the literature such as Boyd-Wong fixed point theorem and Banach fixed point theorem. |
doi_str_mv | 10.1063/5.0042310 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2495153560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2495153560</sourcerecordid><originalsourceid>FETCH-LOGICAL-p288t-2b529bea4ef7945d26c36a63c1d7b4a4675b047bef331b5699e9c4f0b293c0943</originalsourceid><addsrcrecordid>eNp9kE1LAzEYhIMoWKsH_0HAm7A132mOWvyCgiKK3kKSzZaUdhOTVOi_d0sL3jzNe3jeGWYAuMRogpGgN3yCECMUoyMwwpzjRgosjsEIIcUawujXKTgrZYkQUVJOR-Dt1ecQ2-BgiqGvMPuyWdUCu5jhXdy2zWfsF9DFvmbjaog9XJuUQr8ocLiTyTWYFVz7mgeLkozz5RycdGZV_MVBx-Dj4f599tTMXx6fZ7fzJpHptDbEcqKsN8x3UjHeEuGoMII63ErLDBOSW8Sk9R2l2HKhlFeOdcgSRd3Qho7B1d435fi98aXqZdzkfojUhCmOOeUCDdT1niouVLNroFMOa5O3-idmzfVhL53a7j94IHYD_z3QX57bbOk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2495153560</pqid></control><display><type>conference_proceeding</type><title>Periodic point results for Boyd-Wong contraction mappings on partial metric spaces</title><source>AIP Journals Complete</source><creator>Aslantas, Mustafa ; Bachay, Ali Hüssein</creator><contributor>Canak, Ibrahim ; Dik, Mehmet ; Kandemir, Hacer Sengul ; Gurtug, Ozay ; Uyaver, Sahin ; Harte, Robin ; Turkoglu, Arap Duran ; Kocinac, Ljubisa D. R. ; Ashyralyev, Allaberen ; Cakalli, Huseyin ; Ucgun, Filiz Cagatay ; Savas, Ekrem ; Sezer, Sefa Anil ; Akay, Kadri Ulas ; Ashyralyyev, Charyyar ; Tez, Mujgan ; Onvural, Oruc Raif ; Sahin, Hakan</contributor><creatorcontrib>Aslantas, Mustafa ; Bachay, Ali Hüssein ; Canak, Ibrahim ; Dik, Mehmet ; Kandemir, Hacer Sengul ; Gurtug, Ozay ; Uyaver, Sahin ; Harte, Robin ; Turkoglu, Arap Duran ; Kocinac, Ljubisa D. R. ; Ashyralyev, Allaberen ; Cakalli, Huseyin ; Ucgun, Filiz Cagatay ; Savas, Ekrem ; Sezer, Sefa Anil ; Akay, Kadri Ulas ; Ashyralyyev, Charyyar ; Tez, Mujgan ; Onvural, Oruc Raif ; Sahin, Hakan</creatorcontrib><description>In this paper, we prove some periodic point results on partial metric spaces. Thus, we generalize famous results existing in the literature such as Boyd-Wong fixed point theorem and Banach fixed point theorem.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0042310</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Fixed points (mathematics) ; Metric space ; Theorems</subject><ispartof>AIP conference proceedings, 2021, Vol.2334 (1)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0042310$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Canak, Ibrahim</contributor><contributor>Dik, Mehmet</contributor><contributor>Kandemir, Hacer Sengul</contributor><contributor>Gurtug, Ozay</contributor><contributor>Uyaver, Sahin</contributor><contributor>Harte, Robin</contributor><contributor>Turkoglu, Arap Duran</contributor><contributor>Kocinac, Ljubisa D. R.</contributor><contributor>Ashyralyev, Allaberen</contributor><contributor>Cakalli, Huseyin</contributor><contributor>Ucgun, Filiz Cagatay</contributor><contributor>Savas, Ekrem</contributor><contributor>Sezer, Sefa Anil</contributor><contributor>Akay, Kadri Ulas</contributor><contributor>Ashyralyyev, Charyyar</contributor><contributor>Tez, Mujgan</contributor><contributor>Onvural, Oruc Raif</contributor><contributor>Sahin, Hakan</contributor><creatorcontrib>Aslantas, Mustafa</creatorcontrib><creatorcontrib>Bachay, Ali Hüssein</creatorcontrib><title>Periodic point results for Boyd-Wong contraction mappings on partial metric spaces</title><title>AIP conference proceedings</title><description>In this paper, we prove some periodic point results on partial metric spaces. Thus, we generalize famous results existing in the literature such as Boyd-Wong fixed point theorem and Banach fixed point theorem.</description><subject>Fixed points (mathematics)</subject><subject>Metric space</subject><subject>Theorems</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE1LAzEYhIMoWKsH_0HAm7A132mOWvyCgiKK3kKSzZaUdhOTVOi_d0sL3jzNe3jeGWYAuMRogpGgN3yCECMUoyMwwpzjRgosjsEIIcUawujXKTgrZYkQUVJOR-Dt1ecQ2-BgiqGvMPuyWdUCu5jhXdy2zWfsF9DFvmbjaog9XJuUQr8ocLiTyTWYFVz7mgeLkozz5RycdGZV_MVBx-Dj4f599tTMXx6fZ7fzJpHptDbEcqKsN8x3UjHeEuGoMII63ErLDBOSW8Sk9R2l2HKhlFeOdcgSRd3Qho7B1d435fi98aXqZdzkfojUhCmOOeUCDdT1niouVLNroFMOa5O3-idmzfVhL53a7j94IHYD_z3QX57bbOk</recordid><startdate>20210302</startdate><enddate>20210302</enddate><creator>Aslantas, Mustafa</creator><creator>Bachay, Ali Hüssein</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20210302</creationdate><title>Periodic point results for Boyd-Wong contraction mappings on partial metric spaces</title><author>Aslantas, Mustafa ; Bachay, Ali Hüssein</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p288t-2b529bea4ef7945d26c36a63c1d7b4a4675b047bef331b5699e9c4f0b293c0943</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Fixed points (mathematics)</topic><topic>Metric space</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aslantas, Mustafa</creatorcontrib><creatorcontrib>Bachay, Ali Hüssein</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aslantas, Mustafa</au><au>Bachay, Ali Hüssein</au><au>Canak, Ibrahim</au><au>Dik, Mehmet</au><au>Kandemir, Hacer Sengul</au><au>Gurtug, Ozay</au><au>Uyaver, Sahin</au><au>Harte, Robin</au><au>Turkoglu, Arap Duran</au><au>Kocinac, Ljubisa D. R.</au><au>Ashyralyev, Allaberen</au><au>Cakalli, Huseyin</au><au>Ucgun, Filiz Cagatay</au><au>Savas, Ekrem</au><au>Sezer, Sefa Anil</au><au>Akay, Kadri Ulas</au><au>Ashyralyyev, Charyyar</au><au>Tez, Mujgan</au><au>Onvural, Oruc Raif</au><au>Sahin, Hakan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Periodic point results for Boyd-Wong contraction mappings on partial metric spaces</atitle><btitle>AIP conference proceedings</btitle><date>2021-03-02</date><risdate>2021</risdate><volume>2334</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In this paper, we prove some periodic point results on partial metric spaces. Thus, we generalize famous results existing in the literature such as Boyd-Wong fixed point theorem and Banach fixed point theorem.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0042310</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2021, Vol.2334 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2495153560 |
source | AIP Journals Complete |
subjects | Fixed points (mathematics) Metric space Theorems |
title | Periodic point results for Boyd-Wong contraction mappings on partial metric spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A27%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Periodic%20point%20results%20for%20Boyd-Wong%20contraction%20mappings%20on%20partial%20metric%20spaces&rft.btitle=AIP%20conference%20proceedings&rft.au=Aslantas,%20Mustafa&rft.date=2021-03-02&rft.volume=2334&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0042310&rft_dat=%3Cproquest_scita%3E2495153560%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2495153560&rft_id=info:pmid/&rfr_iscdi=true |