Periodic point results for Boyd-Wong contraction mappings on partial metric spaces

In this paper, we prove some periodic point results on partial metric spaces. Thus, we generalize famous results existing in the literature such as Boyd-Wong fixed point theorem and Banach fixed point theorem.

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Aslantas, Mustafa, Bachay, Ali Hüssein
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2334
creator Aslantas, Mustafa
Bachay, Ali Hüssein
description In this paper, we prove some periodic point results on partial metric spaces. Thus, we generalize famous results existing in the literature such as Boyd-Wong fixed point theorem and Banach fixed point theorem.
doi_str_mv 10.1063/5.0042310
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2495153560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2495153560</sourcerecordid><originalsourceid>FETCH-LOGICAL-p288t-2b529bea4ef7945d26c36a63c1d7b4a4675b047bef331b5699e9c4f0b293c0943</originalsourceid><addsrcrecordid>eNp9kE1LAzEYhIMoWKsH_0HAm7A132mOWvyCgiKK3kKSzZaUdhOTVOi_d0sL3jzNe3jeGWYAuMRogpGgN3yCECMUoyMwwpzjRgosjsEIIcUawujXKTgrZYkQUVJOR-Dt1ecQ2-BgiqGvMPuyWdUCu5jhXdy2zWfsF9DFvmbjaog9XJuUQr8ocLiTyTWYFVz7mgeLkozz5RycdGZV_MVBx-Dj4f599tTMXx6fZ7fzJpHptDbEcqKsN8x3UjHeEuGoMII63ErLDBOSW8Sk9R2l2HKhlFeOdcgSRd3Qho7B1d435fi98aXqZdzkfojUhCmOOeUCDdT1niouVLNroFMOa5O3-idmzfVhL53a7j94IHYD_z3QX57bbOk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2495153560</pqid></control><display><type>conference_proceeding</type><title>Periodic point results for Boyd-Wong contraction mappings on partial metric spaces</title><source>AIP Journals Complete</source><creator>Aslantas, Mustafa ; Bachay, Ali Hüssein</creator><contributor>Canak, Ibrahim ; Dik, Mehmet ; Kandemir, Hacer Sengul ; Gurtug, Ozay ; Uyaver, Sahin ; Harte, Robin ; Turkoglu, Arap Duran ; Kocinac, Ljubisa D. R. ; Ashyralyev, Allaberen ; Cakalli, Huseyin ; Ucgun, Filiz Cagatay ; Savas, Ekrem ; Sezer, Sefa Anil ; Akay, Kadri Ulas ; Ashyralyyev, Charyyar ; Tez, Mujgan ; Onvural, Oruc Raif ; Sahin, Hakan</contributor><creatorcontrib>Aslantas, Mustafa ; Bachay, Ali Hüssein ; Canak, Ibrahim ; Dik, Mehmet ; Kandemir, Hacer Sengul ; Gurtug, Ozay ; Uyaver, Sahin ; Harte, Robin ; Turkoglu, Arap Duran ; Kocinac, Ljubisa D. R. ; Ashyralyev, Allaberen ; Cakalli, Huseyin ; Ucgun, Filiz Cagatay ; Savas, Ekrem ; Sezer, Sefa Anil ; Akay, Kadri Ulas ; Ashyralyyev, Charyyar ; Tez, Mujgan ; Onvural, Oruc Raif ; Sahin, Hakan</creatorcontrib><description>In this paper, we prove some periodic point results on partial metric spaces. Thus, we generalize famous results existing in the literature such as Boyd-Wong fixed point theorem and Banach fixed point theorem.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0042310</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Fixed points (mathematics) ; Metric space ; Theorems</subject><ispartof>AIP conference proceedings, 2021, Vol.2334 (1)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0042310$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Canak, Ibrahim</contributor><contributor>Dik, Mehmet</contributor><contributor>Kandemir, Hacer Sengul</contributor><contributor>Gurtug, Ozay</contributor><contributor>Uyaver, Sahin</contributor><contributor>Harte, Robin</contributor><contributor>Turkoglu, Arap Duran</contributor><contributor>Kocinac, Ljubisa D. R.</contributor><contributor>Ashyralyev, Allaberen</contributor><contributor>Cakalli, Huseyin</contributor><contributor>Ucgun, Filiz Cagatay</contributor><contributor>Savas, Ekrem</contributor><contributor>Sezer, Sefa Anil</contributor><contributor>Akay, Kadri Ulas</contributor><contributor>Ashyralyyev, Charyyar</contributor><contributor>Tez, Mujgan</contributor><contributor>Onvural, Oruc Raif</contributor><contributor>Sahin, Hakan</contributor><creatorcontrib>Aslantas, Mustafa</creatorcontrib><creatorcontrib>Bachay, Ali Hüssein</creatorcontrib><title>Periodic point results for Boyd-Wong contraction mappings on partial metric spaces</title><title>AIP conference proceedings</title><description>In this paper, we prove some periodic point results on partial metric spaces. Thus, we generalize famous results existing in the literature such as Boyd-Wong fixed point theorem and Banach fixed point theorem.</description><subject>Fixed points (mathematics)</subject><subject>Metric space</subject><subject>Theorems</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE1LAzEYhIMoWKsH_0HAm7A132mOWvyCgiKK3kKSzZaUdhOTVOi_d0sL3jzNe3jeGWYAuMRogpGgN3yCECMUoyMwwpzjRgosjsEIIcUawujXKTgrZYkQUVJOR-Dt1ecQ2-BgiqGvMPuyWdUCu5jhXdy2zWfsF9DFvmbjaog9XJuUQr8ocLiTyTWYFVz7mgeLkozz5RycdGZV_MVBx-Dj4f599tTMXx6fZ7fzJpHptDbEcqKsN8x3UjHeEuGoMII63ErLDBOSW8Sk9R2l2HKhlFeOdcgSRd3Qho7B1d435fi98aXqZdzkfojUhCmOOeUCDdT1niouVLNroFMOa5O3-idmzfVhL53a7j94IHYD_z3QX57bbOk</recordid><startdate>20210302</startdate><enddate>20210302</enddate><creator>Aslantas, Mustafa</creator><creator>Bachay, Ali Hüssein</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20210302</creationdate><title>Periodic point results for Boyd-Wong contraction mappings on partial metric spaces</title><author>Aslantas, Mustafa ; Bachay, Ali Hüssein</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p288t-2b529bea4ef7945d26c36a63c1d7b4a4675b047bef331b5699e9c4f0b293c0943</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Fixed points (mathematics)</topic><topic>Metric space</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aslantas, Mustafa</creatorcontrib><creatorcontrib>Bachay, Ali Hüssein</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aslantas, Mustafa</au><au>Bachay, Ali Hüssein</au><au>Canak, Ibrahim</au><au>Dik, Mehmet</au><au>Kandemir, Hacer Sengul</au><au>Gurtug, Ozay</au><au>Uyaver, Sahin</au><au>Harte, Robin</au><au>Turkoglu, Arap Duran</au><au>Kocinac, Ljubisa D. R.</au><au>Ashyralyev, Allaberen</au><au>Cakalli, Huseyin</au><au>Ucgun, Filiz Cagatay</au><au>Savas, Ekrem</au><au>Sezer, Sefa Anil</au><au>Akay, Kadri Ulas</au><au>Ashyralyyev, Charyyar</au><au>Tez, Mujgan</au><au>Onvural, Oruc Raif</au><au>Sahin, Hakan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Periodic point results for Boyd-Wong contraction mappings on partial metric spaces</atitle><btitle>AIP conference proceedings</btitle><date>2021-03-02</date><risdate>2021</risdate><volume>2334</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In this paper, we prove some periodic point results on partial metric spaces. Thus, we generalize famous results existing in the literature such as Boyd-Wong fixed point theorem and Banach fixed point theorem.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0042310</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2021, Vol.2334 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2495153560
source AIP Journals Complete
subjects Fixed points (mathematics)
Metric space
Theorems
title Periodic point results for Boyd-Wong contraction mappings on partial metric spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A27%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Periodic%20point%20results%20for%20Boyd-Wong%20contraction%20mappings%20on%20partial%20metric%20spaces&rft.btitle=AIP%20conference%20proceedings&rft.au=Aslantas,%20Mustafa&rft.date=2021-03-02&rft.volume=2334&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0042310&rft_dat=%3Cproquest_scita%3E2495153560%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2495153560&rft_id=info:pmid/&rfr_iscdi=true