Tracking break-induced replication shows that it stalls at roadblocks

Break-induced replication (BIR) repairs one-ended double-strand breaks in DNA similar to those formed by replication collapse or telomere erosion, and it has been implicated in the initiation of genome instability in cancer and other human diseases 1 , 2 . Previous studies have defined the enzymes t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2021-02, Vol.590 (7847), p.655-659
Hauptverfasser: Liu, Liping, Yan, Zhenxin, Osia, Beth A., Twarowski, Jerzy, Sun, Luyang, Kramara, Juraj, Lee, Rosemary S., Kumar, Sandeep, Elango, Rajula, Li, Hanzeng, Dang, Weiwei, Ira, Grzegorz, Malkova, Anna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 659
container_issue 7847
container_start_page 655
container_title Nature (London)
container_volume 590
creator Liu, Liping
Yan, Zhenxin
Osia, Beth A.
Twarowski, Jerzy
Sun, Luyang
Kramara, Juraj
Lee, Rosemary S.
Kumar, Sandeep
Elango, Rajula
Li, Hanzeng
Dang, Weiwei
Ira, Grzegorz
Malkova, Anna
description Break-induced replication (BIR) repairs one-ended double-strand breaks in DNA similar to those formed by replication collapse or telomere erosion, and it has been implicated in the initiation of genome instability in cancer and other human diseases 1 , 2 . Previous studies have defined the enzymes that are required for BIR 1 – 5 ; however, understanding of initial and extended BIR synthesis, and of how the migrating D-loop proceeds through known replication roadblocks, has been precluded by technical limitations. Here we use a newly developed assay to show that BIR synthesis initiates soon after strand invasion and proceeds more slowly than S-phase replication. Without primase, leading strand synthesis is initiated efficiently, but is unable to proceed beyond 30 kilobases, suggesting that primase is needed for stabilization of the nascent leading strand. DNA synthesis can initiate in the absence of Pif1 or Pol32, but does not proceed efficiently. Interstitial telomeric DNA disrupts and terminates BIR progression, and BIR initiation is suppressed by transcription proportionally to the transcription level. Collisions between BIR and transcription lead to mutagenesis and chromosome rearrangements at levels that exceed instabilities induced by transcription during normal replication. Together, these results provide fundamental insights into the mechanism of BIR and how BIR contributes to genome instability. A method of tracking break-induced replication reveals the details of this repair process and shows that it can be impaired by certain genomic elements and by transcription.
doi_str_mv 10.1038/s41586-020-03172-w
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2495071233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A660665902</galeid><sourcerecordid>A660665902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c622t-fcf807b6e1699d0dc9930b88ae94a57a67f4e4fa9f0fe0077a4816a7da8df4f3</originalsourceid><addsrcrecordid>eNp90k1rHCEYB3ApLc027RfooQzNqQfTx5dR5xhC2gYChWTv4jg6MTs7s1GHbb99bDdNsrAUD6L-nkeUP0IfCZwSYOpr4qRWAgMFDIxIirev0IJwKTAXSr5GCwCqMCgmjtC7lO4AoCaSv0VHjHHJKOELdLGMxq7C2FdtdGaFw9jN1nVVdJshWJPDNFbpdtqmKt-aXIVcpWyGIVVlESfTtcNkV-k9euPNkNyHx_kYLb9dLM9_4Kuf3y_Pz66wFZRm7K1XIFvhiGiaDjrbNAxapYxruKmlEdJzx71pPHgHIKXhiggjO6M6zz07Rie7tps43c8uZX03zXEsN2rKmxokoYw9q94MTofRT7m8cR2S1WdCgBB1A7QofED1bnTRDNPofCjbe_7zAW834V6_RKcHUBmdWwd7sOuXvYJisvuVezOnpC9vrvct3Vkbp5Si83oTw9rE35qA_hMIvQuELoHQfwOht6Xo0-OXze3adU8l_xJQANuBVI7G3sXnP_1P2wcL0b1z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2495071233</pqid></control><display><type>article</type><title>Tracking break-induced replication shows that it stalls at roadblocks</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Liu, Liping ; Yan, Zhenxin ; Osia, Beth A. ; Twarowski, Jerzy ; Sun, Luyang ; Kramara, Juraj ; Lee, Rosemary S. ; Kumar, Sandeep ; Elango, Rajula ; Li, Hanzeng ; Dang, Weiwei ; Ira, Grzegorz ; Malkova, Anna</creator><creatorcontrib>Liu, Liping ; Yan, Zhenxin ; Osia, Beth A. ; Twarowski, Jerzy ; Sun, Luyang ; Kramara, Juraj ; Lee, Rosemary S. ; Kumar, Sandeep ; Elango, Rajula ; Li, Hanzeng ; Dang, Weiwei ; Ira, Grzegorz ; Malkova, Anna</creatorcontrib><description>Break-induced replication (BIR) repairs one-ended double-strand breaks in DNA similar to those formed by replication collapse or telomere erosion, and it has been implicated in the initiation of genome instability in cancer and other human diseases 1 , 2 . Previous studies have defined the enzymes that are required for BIR 1 – 5 ; however, understanding of initial and extended BIR synthesis, and of how the migrating D-loop proceeds through known replication roadblocks, has been precluded by technical limitations. Here we use a newly developed assay to show that BIR synthesis initiates soon after strand invasion and proceeds more slowly than S-phase replication. Without primase, leading strand synthesis is initiated efficiently, but is unable to proceed beyond 30 kilobases, suggesting that primase is needed for stabilization of the nascent leading strand. DNA synthesis can initiate in the absence of Pif1 or Pol32, but does not proceed efficiently. Interstitial telomeric DNA disrupts and terminates BIR progression, and BIR initiation is suppressed by transcription proportionally to the transcription level. Collisions between BIR and transcription lead to mutagenesis and chromosome rearrangements at levels that exceed instabilities induced by transcription during normal replication. Together, these results provide fundamental insights into the mechanism of BIR and how BIR contributes to genome instability. A method of tracking break-induced replication reveals the details of this repair process and shows that it can be impaired by certain genomic elements and by transcription.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-020-03172-w</identifier><identifier>PMID: 33473214</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45 ; 45/15 ; 45/23 ; 45/70 ; 45/77 ; 45/90 ; 631/208/211 ; 631/208/737 ; 631/337/1427 ; 631/337/151/1431 ; 64 ; Chromosome rearrangements ; Chromosomes ; Chromosomes, Fungal - genetics ; Deoxyribonucleic acid ; DNA ; DNA biosynthesis ; DNA Breaks, Double-Stranded ; DNA damage ; DNA Helicases - deficiency ; DNA Primase - metabolism ; DNA Repair ; DNA Replication ; DNA, Fungal - biosynthesis ; DNA-Directed DNA Polymerase - deficiency ; Genetic research ; Genetic transcription ; Genomes ; Genomic Instability ; Humanities and Social Sciences ; Kinetics ; multidisciplinary ; Mutagenesis ; Mutation ; Primase ; Replication ; S Phase ; Saccharomyces cerevisiae - cytology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins ; Science ; Science (multidisciplinary) ; Synthesis ; Telomere - genetics ; Telomeres ; Time Factors ; Transcription initiation ; Transcription, Genetic</subject><ispartof>Nature (London), 2021-02, Vol.590 (7847), p.655-659</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Feb 25, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c622t-fcf807b6e1699d0dc9930b88ae94a57a67f4e4fa9f0fe0077a4816a7da8df4f3</citedby><cites>FETCH-LOGICAL-c622t-fcf807b6e1699d0dc9930b88ae94a57a67f4e4fa9f0fe0077a4816a7da8df4f3</cites><orcidid>0000-0003-4186-5708 ; 0000-0002-7180-1177 ; 0000-0002-6931-4636 ; 0000-0002-3880-1781</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-020-03172-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-020-03172-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33473214$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Liping</creatorcontrib><creatorcontrib>Yan, Zhenxin</creatorcontrib><creatorcontrib>Osia, Beth A.</creatorcontrib><creatorcontrib>Twarowski, Jerzy</creatorcontrib><creatorcontrib>Sun, Luyang</creatorcontrib><creatorcontrib>Kramara, Juraj</creatorcontrib><creatorcontrib>Lee, Rosemary S.</creatorcontrib><creatorcontrib>Kumar, Sandeep</creatorcontrib><creatorcontrib>Elango, Rajula</creatorcontrib><creatorcontrib>Li, Hanzeng</creatorcontrib><creatorcontrib>Dang, Weiwei</creatorcontrib><creatorcontrib>Ira, Grzegorz</creatorcontrib><creatorcontrib>Malkova, Anna</creatorcontrib><title>Tracking break-induced replication shows that it stalls at roadblocks</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Break-induced replication (BIR) repairs one-ended double-strand breaks in DNA similar to those formed by replication collapse or telomere erosion, and it has been implicated in the initiation of genome instability in cancer and other human diseases 1 , 2 . Previous studies have defined the enzymes that are required for BIR 1 – 5 ; however, understanding of initial and extended BIR synthesis, and of how the migrating D-loop proceeds through known replication roadblocks, has been precluded by technical limitations. Here we use a newly developed assay to show that BIR synthesis initiates soon after strand invasion and proceeds more slowly than S-phase replication. Without primase, leading strand synthesis is initiated efficiently, but is unable to proceed beyond 30 kilobases, suggesting that primase is needed for stabilization of the nascent leading strand. DNA synthesis can initiate in the absence of Pif1 or Pol32, but does not proceed efficiently. Interstitial telomeric DNA disrupts and terminates BIR progression, and BIR initiation is suppressed by transcription proportionally to the transcription level. Collisions between BIR and transcription lead to mutagenesis and chromosome rearrangements at levels that exceed instabilities induced by transcription during normal replication. Together, these results provide fundamental insights into the mechanism of BIR and how BIR contributes to genome instability. A method of tracking break-induced replication reveals the details of this repair process and shows that it can be impaired by certain genomic elements and by transcription.</description><subject>45</subject><subject>45/15</subject><subject>45/23</subject><subject>45/70</subject><subject>45/77</subject><subject>45/90</subject><subject>631/208/211</subject><subject>631/208/737</subject><subject>631/337/1427</subject><subject>631/337/151/1431</subject><subject>64</subject><subject>Chromosome rearrangements</subject><subject>Chromosomes</subject><subject>Chromosomes, Fungal - genetics</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA damage</subject><subject>DNA Helicases - deficiency</subject><subject>DNA Primase - metabolism</subject><subject>DNA Repair</subject><subject>DNA Replication</subject><subject>DNA, Fungal - biosynthesis</subject><subject>DNA-Directed DNA Polymerase - deficiency</subject><subject>Genetic research</subject><subject>Genetic transcription</subject><subject>Genomes</subject><subject>Genomic Instability</subject><subject>Humanities and Social Sciences</subject><subject>Kinetics</subject><subject>multidisciplinary</subject><subject>Mutagenesis</subject><subject>Mutation</subject><subject>Primase</subject><subject>Replication</subject><subject>S Phase</subject><subject>Saccharomyces cerevisiae - cytology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Synthesis</subject><subject>Telomere - genetics</subject><subject>Telomeres</subject><subject>Time Factors</subject><subject>Transcription initiation</subject><subject>Transcription, Genetic</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp90k1rHCEYB3ApLc027RfooQzNqQfTx5dR5xhC2gYChWTv4jg6MTs7s1GHbb99bDdNsrAUD6L-nkeUP0IfCZwSYOpr4qRWAgMFDIxIirev0IJwKTAXSr5GCwCqMCgmjtC7lO4AoCaSv0VHjHHJKOELdLGMxq7C2FdtdGaFw9jN1nVVdJshWJPDNFbpdtqmKt-aXIVcpWyGIVVlESfTtcNkV-k9euPNkNyHx_kYLb9dLM9_4Kuf3y_Pz66wFZRm7K1XIFvhiGiaDjrbNAxapYxruKmlEdJzx71pPHgHIKXhiggjO6M6zz07Rie7tps43c8uZX03zXEsN2rKmxokoYw9q94MTofRT7m8cR2S1WdCgBB1A7QofED1bnTRDNPofCjbe_7zAW834V6_RKcHUBmdWwd7sOuXvYJisvuVezOnpC9vrvct3Vkbp5Si83oTw9rE35qA_hMIvQuELoHQfwOht6Xo0-OXze3adU8l_xJQANuBVI7G3sXnP_1P2wcL0b1z</recordid><startdate>20210225</startdate><enddate>20210225</enddate><creator>Liu, Liping</creator><creator>Yan, Zhenxin</creator><creator>Osia, Beth A.</creator><creator>Twarowski, Jerzy</creator><creator>Sun, Luyang</creator><creator>Kramara, Juraj</creator><creator>Lee, Rosemary S.</creator><creator>Kumar, Sandeep</creator><creator>Elango, Rajula</creator><creator>Li, Hanzeng</creator><creator>Dang, Weiwei</creator><creator>Ira, Grzegorz</creator><creator>Malkova, Anna</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-4186-5708</orcidid><orcidid>https://orcid.org/0000-0002-7180-1177</orcidid><orcidid>https://orcid.org/0000-0002-6931-4636</orcidid><orcidid>https://orcid.org/0000-0002-3880-1781</orcidid></search><sort><creationdate>20210225</creationdate><title>Tracking break-induced replication shows that it stalls at roadblocks</title><author>Liu, Liping ; Yan, Zhenxin ; Osia, Beth A. ; Twarowski, Jerzy ; Sun, Luyang ; Kramara, Juraj ; Lee, Rosemary S. ; Kumar, Sandeep ; Elango, Rajula ; Li, Hanzeng ; Dang, Weiwei ; Ira, Grzegorz ; Malkova, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c622t-fcf807b6e1699d0dc9930b88ae94a57a67f4e4fa9f0fe0077a4816a7da8df4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>45</topic><topic>45/15</topic><topic>45/23</topic><topic>45/70</topic><topic>45/77</topic><topic>45/90</topic><topic>631/208/211</topic><topic>631/208/737</topic><topic>631/337/1427</topic><topic>631/337/151/1431</topic><topic>64</topic><topic>Chromosome rearrangements</topic><topic>Chromosomes</topic><topic>Chromosomes, Fungal - genetics</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA damage</topic><topic>DNA Helicases - deficiency</topic><topic>DNA Primase - metabolism</topic><topic>DNA Repair</topic><topic>DNA Replication</topic><topic>DNA, Fungal - biosynthesis</topic><topic>DNA-Directed DNA Polymerase - deficiency</topic><topic>Genetic research</topic><topic>Genetic transcription</topic><topic>Genomes</topic><topic>Genomic Instability</topic><topic>Humanities and Social Sciences</topic><topic>Kinetics</topic><topic>multidisciplinary</topic><topic>Mutagenesis</topic><topic>Mutation</topic><topic>Primase</topic><topic>Replication</topic><topic>S Phase</topic><topic>Saccharomyces cerevisiae - cytology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Synthesis</topic><topic>Telomere - genetics</topic><topic>Telomeres</topic><topic>Time Factors</topic><topic>Transcription initiation</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Liping</creatorcontrib><creatorcontrib>Yan, Zhenxin</creatorcontrib><creatorcontrib>Osia, Beth A.</creatorcontrib><creatorcontrib>Twarowski, Jerzy</creatorcontrib><creatorcontrib>Sun, Luyang</creatorcontrib><creatorcontrib>Kramara, Juraj</creatorcontrib><creatorcontrib>Lee, Rosemary S.</creatorcontrib><creatorcontrib>Kumar, Sandeep</creatorcontrib><creatorcontrib>Elango, Rajula</creatorcontrib><creatorcontrib>Li, Hanzeng</creatorcontrib><creatorcontrib>Dang, Weiwei</creatorcontrib><creatorcontrib>Ira, Grzegorz</creatorcontrib><creatorcontrib>Malkova, Anna</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Liping</au><au>Yan, Zhenxin</au><au>Osia, Beth A.</au><au>Twarowski, Jerzy</au><au>Sun, Luyang</au><au>Kramara, Juraj</au><au>Lee, Rosemary S.</au><au>Kumar, Sandeep</au><au>Elango, Rajula</au><au>Li, Hanzeng</au><au>Dang, Weiwei</au><au>Ira, Grzegorz</au><au>Malkova, Anna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tracking break-induced replication shows that it stalls at roadblocks</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2021-02-25</date><risdate>2021</risdate><volume>590</volume><issue>7847</issue><spage>655</spage><epage>659</epage><pages>655-659</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Break-induced replication (BIR) repairs one-ended double-strand breaks in DNA similar to those formed by replication collapse or telomere erosion, and it has been implicated in the initiation of genome instability in cancer and other human diseases 1 , 2 . Previous studies have defined the enzymes that are required for BIR 1 – 5 ; however, understanding of initial and extended BIR synthesis, and of how the migrating D-loop proceeds through known replication roadblocks, has been precluded by technical limitations. Here we use a newly developed assay to show that BIR synthesis initiates soon after strand invasion and proceeds more slowly than S-phase replication. Without primase, leading strand synthesis is initiated efficiently, but is unable to proceed beyond 30 kilobases, suggesting that primase is needed for stabilization of the nascent leading strand. DNA synthesis can initiate in the absence of Pif1 or Pol32, but does not proceed efficiently. Interstitial telomeric DNA disrupts and terminates BIR progression, and BIR initiation is suppressed by transcription proportionally to the transcription level. Collisions between BIR and transcription lead to mutagenesis and chromosome rearrangements at levels that exceed instabilities induced by transcription during normal replication. Together, these results provide fundamental insights into the mechanism of BIR and how BIR contributes to genome instability. A method of tracking break-induced replication reveals the details of this repair process and shows that it can be impaired by certain genomic elements and by transcription.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33473214</pmid><doi>10.1038/s41586-020-03172-w</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-4186-5708</orcidid><orcidid>https://orcid.org/0000-0002-7180-1177</orcidid><orcidid>https://orcid.org/0000-0002-6931-4636</orcidid><orcidid>https://orcid.org/0000-0002-3880-1781</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2021-02, Vol.590 (7847), p.655-659
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_journals_2495071233
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 45
45/15
45/23
45/70
45/77
45/90
631/208/211
631/208/737
631/337/1427
631/337/151/1431
64
Chromosome rearrangements
Chromosomes
Chromosomes, Fungal - genetics
Deoxyribonucleic acid
DNA
DNA biosynthesis
DNA Breaks, Double-Stranded
DNA damage
DNA Helicases - deficiency
DNA Primase - metabolism
DNA Repair
DNA Replication
DNA, Fungal - biosynthesis
DNA-Directed DNA Polymerase - deficiency
Genetic research
Genetic transcription
Genomes
Genomic Instability
Humanities and Social Sciences
Kinetics
multidisciplinary
Mutagenesis
Mutation
Primase
Replication
S Phase
Saccharomyces cerevisiae - cytology
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins
Science
Science (multidisciplinary)
Synthesis
Telomere - genetics
Telomeres
Time Factors
Transcription initiation
Transcription, Genetic
title Tracking break-induced replication shows that it stalls at roadblocks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A38%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tracking%20break-induced%20replication%20shows%20that%20it%20stalls%20at%20roadblocks&rft.jtitle=Nature%20(London)&rft.au=Liu,%20Liping&rft.date=2021-02-25&rft.volume=590&rft.issue=7847&rft.spage=655&rft.epage=659&rft.pages=655-659&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-020-03172-w&rft_dat=%3Cgale_proqu%3EA660665902%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2495071233&rft_id=info:pmid/33473214&rft_galeid=A660665902&rfr_iscdi=true