Tracking break-induced replication shows that it stalls at roadblocks
Break-induced replication (BIR) repairs one-ended double-strand breaks in DNA similar to those formed by replication collapse or telomere erosion, and it has been implicated in the initiation of genome instability in cancer and other human diseases 1 , 2 . Previous studies have defined the enzymes t...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2021-02, Vol.590 (7847), p.655-659 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 659 |
---|---|
container_issue | 7847 |
container_start_page | 655 |
container_title | Nature (London) |
container_volume | 590 |
creator | Liu, Liping Yan, Zhenxin Osia, Beth A. Twarowski, Jerzy Sun, Luyang Kramara, Juraj Lee, Rosemary S. Kumar, Sandeep Elango, Rajula Li, Hanzeng Dang, Weiwei Ira, Grzegorz Malkova, Anna |
description | Break-induced replication (BIR) repairs one-ended double-strand breaks in DNA similar to those formed by replication collapse or telomere erosion, and it has been implicated in the initiation of genome instability in cancer and other human diseases
1
,
2
. Previous studies have defined the enzymes that are required for BIR
1
–
5
; however, understanding of initial and extended BIR synthesis, and of how the migrating D-loop proceeds through known replication roadblocks, has been precluded by technical limitations. Here we use a newly developed assay to show that BIR synthesis initiates soon after strand invasion and proceeds more slowly than S-phase replication. Without primase, leading strand synthesis is initiated efficiently, but is unable to proceed beyond 30 kilobases, suggesting that primase is needed for stabilization of the nascent leading strand. DNA synthesis can initiate in the absence of Pif1 or Pol32, but does not proceed efficiently. Interstitial telomeric DNA disrupts and terminates BIR progression, and BIR initiation is suppressed by transcription proportionally to the transcription level. Collisions between BIR and transcription lead to mutagenesis and chromosome rearrangements at levels that exceed instabilities induced by transcription during normal replication. Together, these results provide fundamental insights into the mechanism of BIR and how BIR contributes to genome instability.
A method of tracking break-induced replication reveals the details of this repair process and shows that it can be impaired by certain genomic elements and by transcription. |
doi_str_mv | 10.1038/s41586-020-03172-w |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2495071233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A660665902</galeid><sourcerecordid>A660665902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c622t-fcf807b6e1699d0dc9930b88ae94a57a67f4e4fa9f0fe0077a4816a7da8df4f3</originalsourceid><addsrcrecordid>eNp90k1rHCEYB3ApLc027RfooQzNqQfTx5dR5xhC2gYChWTv4jg6MTs7s1GHbb99bDdNsrAUD6L-nkeUP0IfCZwSYOpr4qRWAgMFDIxIirev0IJwKTAXSr5GCwCqMCgmjtC7lO4AoCaSv0VHjHHJKOELdLGMxq7C2FdtdGaFw9jN1nVVdJshWJPDNFbpdtqmKt-aXIVcpWyGIVVlESfTtcNkV-k9euPNkNyHx_kYLb9dLM9_4Kuf3y_Pz66wFZRm7K1XIFvhiGiaDjrbNAxapYxruKmlEdJzx71pPHgHIKXhiggjO6M6zz07Rie7tps43c8uZX03zXEsN2rKmxokoYw9q94MTofRT7m8cR2S1WdCgBB1A7QofED1bnTRDNPofCjbe_7zAW834V6_RKcHUBmdWwd7sOuXvYJisvuVezOnpC9vrvct3Vkbp5Si83oTw9rE35qA_hMIvQuELoHQfwOht6Xo0-OXze3adU8l_xJQANuBVI7G3sXnP_1P2wcL0b1z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2495071233</pqid></control><display><type>article</type><title>Tracking break-induced replication shows that it stalls at roadblocks</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Liu, Liping ; Yan, Zhenxin ; Osia, Beth A. ; Twarowski, Jerzy ; Sun, Luyang ; Kramara, Juraj ; Lee, Rosemary S. ; Kumar, Sandeep ; Elango, Rajula ; Li, Hanzeng ; Dang, Weiwei ; Ira, Grzegorz ; Malkova, Anna</creator><creatorcontrib>Liu, Liping ; Yan, Zhenxin ; Osia, Beth A. ; Twarowski, Jerzy ; Sun, Luyang ; Kramara, Juraj ; Lee, Rosemary S. ; Kumar, Sandeep ; Elango, Rajula ; Li, Hanzeng ; Dang, Weiwei ; Ira, Grzegorz ; Malkova, Anna</creatorcontrib><description>Break-induced replication (BIR) repairs one-ended double-strand breaks in DNA similar to those formed by replication collapse or telomere erosion, and it has been implicated in the initiation of genome instability in cancer and other human diseases
1
,
2
. Previous studies have defined the enzymes that are required for BIR
1
–
5
; however, understanding of initial and extended BIR synthesis, and of how the migrating D-loop proceeds through known replication roadblocks, has been precluded by technical limitations. Here we use a newly developed assay to show that BIR synthesis initiates soon after strand invasion and proceeds more slowly than S-phase replication. Without primase, leading strand synthesis is initiated efficiently, but is unable to proceed beyond 30 kilobases, suggesting that primase is needed for stabilization of the nascent leading strand. DNA synthesis can initiate in the absence of Pif1 or Pol32, but does not proceed efficiently. Interstitial telomeric DNA disrupts and terminates BIR progression, and BIR initiation is suppressed by transcription proportionally to the transcription level. Collisions between BIR and transcription lead to mutagenesis and chromosome rearrangements at levels that exceed instabilities induced by transcription during normal replication. Together, these results provide fundamental insights into the mechanism of BIR and how BIR contributes to genome instability.
A method of tracking break-induced replication reveals the details of this repair process and shows that it can be impaired by certain genomic elements and by transcription.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-020-03172-w</identifier><identifier>PMID: 33473214</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45 ; 45/15 ; 45/23 ; 45/70 ; 45/77 ; 45/90 ; 631/208/211 ; 631/208/737 ; 631/337/1427 ; 631/337/151/1431 ; 64 ; Chromosome rearrangements ; Chromosomes ; Chromosomes, Fungal - genetics ; Deoxyribonucleic acid ; DNA ; DNA biosynthesis ; DNA Breaks, Double-Stranded ; DNA damage ; DNA Helicases - deficiency ; DNA Primase - metabolism ; DNA Repair ; DNA Replication ; DNA, Fungal - biosynthesis ; DNA-Directed DNA Polymerase - deficiency ; Genetic research ; Genetic transcription ; Genomes ; Genomic Instability ; Humanities and Social Sciences ; Kinetics ; multidisciplinary ; Mutagenesis ; Mutation ; Primase ; Replication ; S Phase ; Saccharomyces cerevisiae - cytology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins ; Science ; Science (multidisciplinary) ; Synthesis ; Telomere - genetics ; Telomeres ; Time Factors ; Transcription initiation ; Transcription, Genetic</subject><ispartof>Nature (London), 2021-02, Vol.590 (7847), p.655-659</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Feb 25, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c622t-fcf807b6e1699d0dc9930b88ae94a57a67f4e4fa9f0fe0077a4816a7da8df4f3</citedby><cites>FETCH-LOGICAL-c622t-fcf807b6e1699d0dc9930b88ae94a57a67f4e4fa9f0fe0077a4816a7da8df4f3</cites><orcidid>0000-0003-4186-5708 ; 0000-0002-7180-1177 ; 0000-0002-6931-4636 ; 0000-0002-3880-1781</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-020-03172-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-020-03172-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33473214$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Liping</creatorcontrib><creatorcontrib>Yan, Zhenxin</creatorcontrib><creatorcontrib>Osia, Beth A.</creatorcontrib><creatorcontrib>Twarowski, Jerzy</creatorcontrib><creatorcontrib>Sun, Luyang</creatorcontrib><creatorcontrib>Kramara, Juraj</creatorcontrib><creatorcontrib>Lee, Rosemary S.</creatorcontrib><creatorcontrib>Kumar, Sandeep</creatorcontrib><creatorcontrib>Elango, Rajula</creatorcontrib><creatorcontrib>Li, Hanzeng</creatorcontrib><creatorcontrib>Dang, Weiwei</creatorcontrib><creatorcontrib>Ira, Grzegorz</creatorcontrib><creatorcontrib>Malkova, Anna</creatorcontrib><title>Tracking break-induced replication shows that it stalls at roadblocks</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Break-induced replication (BIR) repairs one-ended double-strand breaks in DNA similar to those formed by replication collapse or telomere erosion, and it has been implicated in the initiation of genome instability in cancer and other human diseases
1
,
2
. Previous studies have defined the enzymes that are required for BIR
1
–
5
; however, understanding of initial and extended BIR synthesis, and of how the migrating D-loop proceeds through known replication roadblocks, has been precluded by technical limitations. Here we use a newly developed assay to show that BIR synthesis initiates soon after strand invasion and proceeds more slowly than S-phase replication. Without primase, leading strand synthesis is initiated efficiently, but is unable to proceed beyond 30 kilobases, suggesting that primase is needed for stabilization of the nascent leading strand. DNA synthesis can initiate in the absence of Pif1 or Pol32, but does not proceed efficiently. Interstitial telomeric DNA disrupts and terminates BIR progression, and BIR initiation is suppressed by transcription proportionally to the transcription level. Collisions between BIR and transcription lead to mutagenesis and chromosome rearrangements at levels that exceed instabilities induced by transcription during normal replication. Together, these results provide fundamental insights into the mechanism of BIR and how BIR contributes to genome instability.
A method of tracking break-induced replication reveals the details of this repair process and shows that it can be impaired by certain genomic elements and by transcription.</description><subject>45</subject><subject>45/15</subject><subject>45/23</subject><subject>45/70</subject><subject>45/77</subject><subject>45/90</subject><subject>631/208/211</subject><subject>631/208/737</subject><subject>631/337/1427</subject><subject>631/337/151/1431</subject><subject>64</subject><subject>Chromosome rearrangements</subject><subject>Chromosomes</subject><subject>Chromosomes, Fungal - genetics</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA damage</subject><subject>DNA Helicases - deficiency</subject><subject>DNA Primase - metabolism</subject><subject>DNA Repair</subject><subject>DNA Replication</subject><subject>DNA, Fungal - biosynthesis</subject><subject>DNA-Directed DNA Polymerase - deficiency</subject><subject>Genetic research</subject><subject>Genetic transcription</subject><subject>Genomes</subject><subject>Genomic Instability</subject><subject>Humanities and Social Sciences</subject><subject>Kinetics</subject><subject>multidisciplinary</subject><subject>Mutagenesis</subject><subject>Mutation</subject><subject>Primase</subject><subject>Replication</subject><subject>S Phase</subject><subject>Saccharomyces cerevisiae - cytology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Synthesis</subject><subject>Telomere - genetics</subject><subject>Telomeres</subject><subject>Time Factors</subject><subject>Transcription initiation</subject><subject>Transcription, Genetic</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp90k1rHCEYB3ApLc027RfooQzNqQfTx5dR5xhC2gYChWTv4jg6MTs7s1GHbb99bDdNsrAUD6L-nkeUP0IfCZwSYOpr4qRWAgMFDIxIirev0IJwKTAXSr5GCwCqMCgmjtC7lO4AoCaSv0VHjHHJKOELdLGMxq7C2FdtdGaFw9jN1nVVdJshWJPDNFbpdtqmKt-aXIVcpWyGIVVlESfTtcNkV-k9euPNkNyHx_kYLb9dLM9_4Kuf3y_Pz66wFZRm7K1XIFvhiGiaDjrbNAxapYxruKmlEdJzx71pPHgHIKXhiggjO6M6zz07Rie7tps43c8uZX03zXEsN2rKmxokoYw9q94MTofRT7m8cR2S1WdCgBB1A7QofED1bnTRDNPofCjbe_7zAW834V6_RKcHUBmdWwd7sOuXvYJisvuVezOnpC9vrvct3Vkbp5Si83oTw9rE35qA_hMIvQuELoHQfwOht6Xo0-OXze3adU8l_xJQANuBVI7G3sXnP_1P2wcL0b1z</recordid><startdate>20210225</startdate><enddate>20210225</enddate><creator>Liu, Liping</creator><creator>Yan, Zhenxin</creator><creator>Osia, Beth A.</creator><creator>Twarowski, Jerzy</creator><creator>Sun, Luyang</creator><creator>Kramara, Juraj</creator><creator>Lee, Rosemary S.</creator><creator>Kumar, Sandeep</creator><creator>Elango, Rajula</creator><creator>Li, Hanzeng</creator><creator>Dang, Weiwei</creator><creator>Ira, Grzegorz</creator><creator>Malkova, Anna</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-4186-5708</orcidid><orcidid>https://orcid.org/0000-0002-7180-1177</orcidid><orcidid>https://orcid.org/0000-0002-6931-4636</orcidid><orcidid>https://orcid.org/0000-0002-3880-1781</orcidid></search><sort><creationdate>20210225</creationdate><title>Tracking break-induced replication shows that it stalls at roadblocks</title><author>Liu, Liping ; Yan, Zhenxin ; Osia, Beth A. ; Twarowski, Jerzy ; Sun, Luyang ; Kramara, Juraj ; Lee, Rosemary S. ; Kumar, Sandeep ; Elango, Rajula ; Li, Hanzeng ; Dang, Weiwei ; Ira, Grzegorz ; Malkova, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c622t-fcf807b6e1699d0dc9930b88ae94a57a67f4e4fa9f0fe0077a4816a7da8df4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>45</topic><topic>45/15</topic><topic>45/23</topic><topic>45/70</topic><topic>45/77</topic><topic>45/90</topic><topic>631/208/211</topic><topic>631/208/737</topic><topic>631/337/1427</topic><topic>631/337/151/1431</topic><topic>64</topic><topic>Chromosome rearrangements</topic><topic>Chromosomes</topic><topic>Chromosomes, Fungal - genetics</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA damage</topic><topic>DNA Helicases - deficiency</topic><topic>DNA Primase - metabolism</topic><topic>DNA Repair</topic><topic>DNA Replication</topic><topic>DNA, Fungal - biosynthesis</topic><topic>DNA-Directed DNA Polymerase - deficiency</topic><topic>Genetic research</topic><topic>Genetic transcription</topic><topic>Genomes</topic><topic>Genomic Instability</topic><topic>Humanities and Social Sciences</topic><topic>Kinetics</topic><topic>multidisciplinary</topic><topic>Mutagenesis</topic><topic>Mutation</topic><topic>Primase</topic><topic>Replication</topic><topic>S Phase</topic><topic>Saccharomyces cerevisiae - cytology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Synthesis</topic><topic>Telomere - genetics</topic><topic>Telomeres</topic><topic>Time Factors</topic><topic>Transcription initiation</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Liping</creatorcontrib><creatorcontrib>Yan, Zhenxin</creatorcontrib><creatorcontrib>Osia, Beth A.</creatorcontrib><creatorcontrib>Twarowski, Jerzy</creatorcontrib><creatorcontrib>Sun, Luyang</creatorcontrib><creatorcontrib>Kramara, Juraj</creatorcontrib><creatorcontrib>Lee, Rosemary S.</creatorcontrib><creatorcontrib>Kumar, Sandeep</creatorcontrib><creatorcontrib>Elango, Rajula</creatorcontrib><creatorcontrib>Li, Hanzeng</creatorcontrib><creatorcontrib>Dang, Weiwei</creatorcontrib><creatorcontrib>Ira, Grzegorz</creatorcontrib><creatorcontrib>Malkova, Anna</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Liping</au><au>Yan, Zhenxin</au><au>Osia, Beth A.</au><au>Twarowski, Jerzy</au><au>Sun, Luyang</au><au>Kramara, Juraj</au><au>Lee, Rosemary S.</au><au>Kumar, Sandeep</au><au>Elango, Rajula</au><au>Li, Hanzeng</au><au>Dang, Weiwei</au><au>Ira, Grzegorz</au><au>Malkova, Anna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tracking break-induced replication shows that it stalls at roadblocks</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2021-02-25</date><risdate>2021</risdate><volume>590</volume><issue>7847</issue><spage>655</spage><epage>659</epage><pages>655-659</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Break-induced replication (BIR) repairs one-ended double-strand breaks in DNA similar to those formed by replication collapse or telomere erosion, and it has been implicated in the initiation of genome instability in cancer and other human diseases
1
,
2
. Previous studies have defined the enzymes that are required for BIR
1
–
5
; however, understanding of initial and extended BIR synthesis, and of how the migrating D-loop proceeds through known replication roadblocks, has been precluded by technical limitations. Here we use a newly developed assay to show that BIR synthesis initiates soon after strand invasion and proceeds more slowly than S-phase replication. Without primase, leading strand synthesis is initiated efficiently, but is unable to proceed beyond 30 kilobases, suggesting that primase is needed for stabilization of the nascent leading strand. DNA synthesis can initiate in the absence of Pif1 or Pol32, but does not proceed efficiently. Interstitial telomeric DNA disrupts and terminates BIR progression, and BIR initiation is suppressed by transcription proportionally to the transcription level. Collisions between BIR and transcription lead to mutagenesis and chromosome rearrangements at levels that exceed instabilities induced by transcription during normal replication. Together, these results provide fundamental insights into the mechanism of BIR and how BIR contributes to genome instability.
A method of tracking break-induced replication reveals the details of this repair process and shows that it can be impaired by certain genomic elements and by transcription.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33473214</pmid><doi>10.1038/s41586-020-03172-w</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-4186-5708</orcidid><orcidid>https://orcid.org/0000-0002-7180-1177</orcidid><orcidid>https://orcid.org/0000-0002-6931-4636</orcidid><orcidid>https://orcid.org/0000-0002-3880-1781</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2021-02, Vol.590 (7847), p.655-659 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_journals_2495071233 |
source | MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 45 45/15 45/23 45/70 45/77 45/90 631/208/211 631/208/737 631/337/1427 631/337/151/1431 64 Chromosome rearrangements Chromosomes Chromosomes, Fungal - genetics Deoxyribonucleic acid DNA DNA biosynthesis DNA Breaks, Double-Stranded DNA damage DNA Helicases - deficiency DNA Primase - metabolism DNA Repair DNA Replication DNA, Fungal - biosynthesis DNA-Directed DNA Polymerase - deficiency Genetic research Genetic transcription Genomes Genomic Instability Humanities and Social Sciences Kinetics multidisciplinary Mutagenesis Mutation Primase Replication S Phase Saccharomyces cerevisiae - cytology Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins Science Science (multidisciplinary) Synthesis Telomere - genetics Telomeres Time Factors Transcription initiation Transcription, Genetic |
title | Tracking break-induced replication shows that it stalls at roadblocks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A38%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tracking%20break-induced%20replication%20shows%20that%20it%20stalls%20at%20roadblocks&rft.jtitle=Nature%20(London)&rft.au=Liu,%20Liping&rft.date=2021-02-25&rft.volume=590&rft.issue=7847&rft.spage=655&rft.epage=659&rft.pages=655-659&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-020-03172-w&rft_dat=%3Cgale_proqu%3EA660665902%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2495071233&rft_id=info:pmid/33473214&rft_galeid=A660665902&rfr_iscdi=true |