Does the embedded atom model have predictive power?

Potassium, rubidium, aluminum, iron, nickel, and tin embedded atom models (EAMs) have been used as examples to ascertain how well the properties of a metal are described by EAM potentials calculated from the shape of shock adiabats and/or static compression data (from a function of cold pressure). V...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics Uspekhi 2020-12, Vol.63 (12), p.1161-1187
1. Verfasser: Belashchenko, D K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1187
container_issue 12
container_start_page 1161
container_title Physics Uspekhi
container_volume 63
creator Belashchenko, D K
description Potassium, rubidium, aluminum, iron, nickel, and tin embedded atom models (EAMs) have been used as examples to ascertain how well the properties of a metal are described by EAM potentials calculated from the shape of shock adiabats and/or static compression data (from a function of cold pressure). Verification of the EAM potential implies an evaluation of its predictive power and an analysis of the agreement with experiment both at 0 or 298 K and under shock compression. To obtain consistent results, all contributions of collectivized electrons to energy and pressure need to be taken into consideration, especially in transition metals. Taking account of or ignoring electron contributions has little effect on the calculated melting lines of the models, self-diffusion coefficients, and viscosity. The shape of the melting line is sensitive to the behavior of the repulsive branch of the pair contribution to the EAM potential at small distances.
doi_str_mv 10.3367/UFNe.2020.01.038761
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2494973153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2494973153</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-7e1bc8a500c3156ff1597eeeeb5962fdc8343870a140c2d7e143f4ddaab625df3</originalsourceid><addsrcrecordid>eNotkMtOwzAQRS0EEqXwBWwisU4YP2InK4QKBaQKNnRtOfZYbdXgYqcg_r6OwmzmLo7ujA4htxQqzqW6Xy_fsWLAoAJaAW-UpGdkRoVsSqEaOM8ZJC9VI9tLcpXSDgAYrdWM8KeAqRg2WGDfoXPoCjOEvuiDw32xMT9YHCK6rR22Ywy_GB-uyYU3-4Q3_3tO1svnz8Vrufp4eVs8rkrLlBpKhbSzjakBLKe19J7WrcI8Xd1K5p1tuMivgqECLHMZF9wL54zpJKud53NyN_UeYvg-Yhr0LhzjVz6pmWhFq3ItzxSfKBtDShG9PsRtb-KfpqBHO3q0o0c7Gqie7PATLjdXVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2494973153</pqid></control><display><type>article</type><title>Does the embedded atom model have predictive power?</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Belashchenko, D K</creator><creatorcontrib>Belashchenko, D K</creatorcontrib><description>Potassium, rubidium, aluminum, iron, nickel, and tin embedded atom models (EAMs) have been used as examples to ascertain how well the properties of a metal are described by EAM potentials calculated from the shape of shock adiabats and/or static compression data (from a function of cold pressure). Verification of the EAM potential implies an evaluation of its predictive power and an analysis of the agreement with experiment both at 0 or 298 K and under shock compression. To obtain consistent results, all contributions of collectivized electrons to energy and pressure need to be taken into consideration, especially in transition metals. Taking account of or ignoring electron contributions has little effect on the calculated melting lines of the models, self-diffusion coefficients, and viscosity. The shape of the melting line is sensitive to the behavior of the repulsive branch of the pair contribution to the EAM potential at small distances.</description><identifier>ISSN: 1063-7869</identifier><identifier>EISSN: 1468-4780</identifier><identifier>DOI: 10.3367/UFNe.2020.01.038761</identifier><language>eng</language><publisher>London: IOP Publishing</publisher><subject>Aluminum ; Data compression ; Embedded atom method ; Rubidium ; Self diffusion ; Transition metals</subject><ispartof>Physics Uspekhi, 2020-12, Vol.63 (12), p.1161-1187</ispartof><rights>Copyright IOP Publishing Dec 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-7e1bc8a500c3156ff1597eeeeb5962fdc8343870a140c2d7e143f4ddaab625df3</citedby><cites>FETCH-LOGICAL-c277t-7e1bc8a500c3156ff1597eeeeb5962fdc8343870a140c2d7e143f4ddaab625df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Belashchenko, D K</creatorcontrib><title>Does the embedded atom model have predictive power?</title><title>Physics Uspekhi</title><description>Potassium, rubidium, aluminum, iron, nickel, and tin embedded atom models (EAMs) have been used as examples to ascertain how well the properties of a metal are described by EAM potentials calculated from the shape of shock adiabats and/or static compression data (from a function of cold pressure). Verification of the EAM potential implies an evaluation of its predictive power and an analysis of the agreement with experiment both at 0 or 298 K and under shock compression. To obtain consistent results, all contributions of collectivized electrons to energy and pressure need to be taken into consideration, especially in transition metals. Taking account of or ignoring electron contributions has little effect on the calculated melting lines of the models, self-diffusion coefficients, and viscosity. The shape of the melting line is sensitive to the behavior of the repulsive branch of the pair contribution to the EAM potential at small distances.</description><subject>Aluminum</subject><subject>Data compression</subject><subject>Embedded atom method</subject><subject>Rubidium</subject><subject>Self diffusion</subject><subject>Transition metals</subject><issn>1063-7869</issn><issn>1468-4780</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkMtOwzAQRS0EEqXwBWwisU4YP2InK4QKBaQKNnRtOfZYbdXgYqcg_r6OwmzmLo7ujA4htxQqzqW6Xy_fsWLAoAJaAW-UpGdkRoVsSqEaOM8ZJC9VI9tLcpXSDgAYrdWM8KeAqRg2WGDfoXPoCjOEvuiDw32xMT9YHCK6rR22Ywy_GB-uyYU3-4Q3_3tO1svnz8Vrufp4eVs8rkrLlBpKhbSzjakBLKe19J7WrcI8Xd1K5p1tuMivgqECLHMZF9wL54zpJKud53NyN_UeYvg-Yhr0LhzjVz6pmWhFq3ItzxSfKBtDShG9PsRtb-KfpqBHO3q0o0c7Gqie7PATLjdXVg</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Belashchenko, D K</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20201201</creationdate><title>Does the embedded atom model have predictive power?</title><author>Belashchenko, D K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-7e1bc8a500c3156ff1597eeeeb5962fdc8343870a140c2d7e143f4ddaab625df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum</topic><topic>Data compression</topic><topic>Embedded atom method</topic><topic>Rubidium</topic><topic>Self diffusion</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Belashchenko, D K</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics Uspekhi</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belashchenko, D K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Does the embedded atom model have predictive power?</atitle><jtitle>Physics Uspekhi</jtitle><date>2020-12-01</date><risdate>2020</risdate><volume>63</volume><issue>12</issue><spage>1161</spage><epage>1187</epage><pages>1161-1187</pages><issn>1063-7869</issn><eissn>1468-4780</eissn><abstract>Potassium, rubidium, aluminum, iron, nickel, and tin embedded atom models (EAMs) have been used as examples to ascertain how well the properties of a metal are described by EAM potentials calculated from the shape of shock adiabats and/or static compression data (from a function of cold pressure). Verification of the EAM potential implies an evaluation of its predictive power and an analysis of the agreement with experiment both at 0 or 298 K and under shock compression. To obtain consistent results, all contributions of collectivized electrons to energy and pressure need to be taken into consideration, especially in transition metals. Taking account of or ignoring electron contributions has little effect on the calculated melting lines of the models, self-diffusion coefficients, and viscosity. The shape of the melting line is sensitive to the behavior of the repulsive branch of the pair contribution to the EAM potential at small distances.</abstract><cop>London</cop><pub>IOP Publishing</pub><doi>10.3367/UFNe.2020.01.038761</doi><tpages>27</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7869
ispartof Physics Uspekhi, 2020-12, Vol.63 (12), p.1161-1187
issn 1063-7869
1468-4780
language eng
recordid cdi_proquest_journals_2494973153
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Aluminum
Data compression
Embedded atom method
Rubidium
Self diffusion
Transition metals
title Does the embedded atom model have predictive power?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T04%3A22%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Does%20the%20embedded%20atom%20model%20have%20predictive%20power?&rft.jtitle=Physics%20Uspekhi&rft.au=Belashchenko,%20D%20K&rft.date=2020-12-01&rft.volume=63&rft.issue=12&rft.spage=1161&rft.epage=1187&rft.pages=1161-1187&rft.issn=1063-7869&rft.eissn=1468-4780&rft_id=info:doi/10.3367/UFNe.2020.01.038761&rft_dat=%3Cproquest_cross%3E2494973153%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2494973153&rft_id=info:pmid/&rfr_iscdi=true