Natural convection flows of Prabhakar-like fractional Maxwell fluids with generalized thermal transport

Natural convective flows of Prabhakar-like fractional viscoelastic fluids over an infinite vertical heated wall are studied by introducing the generalized fractional constitutive equations for the stress-shear rate and thermal flux density vector. The generalized memory effects are described by the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal analysis and calorimetry 2021-02, Vol.143 (3), p.2245-2258
Hauptverfasser: Shah, Nehad Ali, Fetecau, Constantin, Vieru, Dumitru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2258
container_issue 3
container_start_page 2245
container_title Journal of thermal analysis and calorimetry
container_volume 143
creator Shah, Nehad Ali
Fetecau, Constantin
Vieru, Dumitru
description Natural convective flows of Prabhakar-like fractional viscoelastic fluids over an infinite vertical heated wall are studied by introducing the generalized fractional constitutive equations for the stress-shear rate and thermal flux density vector. The generalized memory effects are described by the time-fractional Prabhakar derivative. Closed-form solutions for the non-dimensional velocity and temperature fields are determined using the method of integral transform. The velocity and heat transfer of Prabhakar-like fractional Maxwell fluids with generalized thermal transport are compared with ordinary Maxwell fluids with generalized thermal transport and with the ordinary viscoelastic fluids with classical Fourier thermal flux. Solutions of the generalized model are particularized into solutions corresponding to flows and heat transfer with Caputo memory, respectively, to flows of the ordinary fluids with ordinary heat transfer. The use of Prabhakar operators shows the possibility of a convenient choice of fractional parameters such that to have a very good fitting between theoretical and experimental data.
doi_str_mv 10.1007/s10973-020-09835-0
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2494910894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A653531898</galeid><sourcerecordid>A653531898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-e1d06fd35210c2ff9667f517d5ca58c9742c76ecb2ef14da7e8a75906c08ca083</originalsourceid><addsrcrecordid>eNp9kUFP3DAQhSNUpNKFP9BTJE49BMZOnNjH1aoFpIUiWs6WccZZQzZebIfd9tdjNpUQl2oOM7K-9_Tkl2VfCZwRgOY8EBBNWQCFAgQvWQEH2RFhnBdU0PpTust014TB5-xLCI8AIASQo6y7UXH0qs-1G15QR-uG3PRuG3Jn8luvHlbqSfmit0-YG6_2QKKv1W6LfZ_Q0bYh39q4yjscMDnZv9jmcYV-nbjo1RA2zsfj7NCoPuDJvz3L7n98_724LJY_L64W82WhKypigaSF2rQlowQ0NUbUdWMYaVqmFeNaNBXVTY36gaIhVasa5KphAmoNXCvg5Sw7nXw33j2PGKJ8dKNPkYOklagEAS6qRJ1NVKd6lHYwLgXVaVpc2_QTaGx6n9esZCXh4s322wdBYiLuYqfGEOTVr7uPLJ1Y7V0IHo3ceLtW_o8kIN_aklNbMrUl921JSKJyEoUEDx3699z_Ub0CC8SYaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2494910894</pqid></control><display><type>article</type><title>Natural convection flows of Prabhakar-like fractional Maxwell fluids with generalized thermal transport</title><source>Springer Journals</source><creator>Shah, Nehad Ali ; Fetecau, Constantin ; Vieru, Dumitru</creator><creatorcontrib>Shah, Nehad Ali ; Fetecau, Constantin ; Vieru, Dumitru</creatorcontrib><description>Natural convective flows of Prabhakar-like fractional viscoelastic fluids over an infinite vertical heated wall are studied by introducing the generalized fractional constitutive equations for the stress-shear rate and thermal flux density vector. The generalized memory effects are described by the time-fractional Prabhakar derivative. Closed-form solutions for the non-dimensional velocity and temperature fields are determined using the method of integral transform. The velocity and heat transfer of Prabhakar-like fractional Maxwell fluids with generalized thermal transport are compared with ordinary Maxwell fluids with generalized thermal transport and with the ordinary viscoelastic fluids with classical Fourier thermal flux. Solutions of the generalized model are particularized into solutions corresponding to flows and heat transfer with Caputo memory, respectively, to flows of the ordinary fluids with ordinary heat transfer. The use of Prabhakar operators shows the possibility of a convenient choice of fractional parameters such that to have a very good fitting between theoretical and experimental data.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-020-09835-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analytical Chemistry ; Chemistry ; Chemistry and Materials Science ; Comparative analysis ; Computational fluid dynamics ; Constitutive equations ; Constitutive relationships ; Convective flow ; Flux density ; Free convection ; Heat transfer ; Heat transmission ; Inorganic Chemistry ; Integral transforms ; Maxwell fluids ; Measurement Science and Instrumentation ; Operators (mathematics) ; Physical Chemistry ; Polymer Sciences ; Shear rate ; Thermoelectricity ; Viscoelastic fluids ; Viscoelasticity</subject><ispartof>Journal of thermal analysis and calorimetry, 2021-02, Vol.143 (3), p.2245-2258</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2020</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Akadémiai Kiadó, Budapest, Hungary 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-e1d06fd35210c2ff9667f517d5ca58c9742c76ecb2ef14da7e8a75906c08ca083</citedby><cites>FETCH-LOGICAL-c429t-e1d06fd35210c2ff9667f517d5ca58c9742c76ecb2ef14da7e8a75906c08ca083</cites><orcidid>0000-0001-9989-8452</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10973-020-09835-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10973-020-09835-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Shah, Nehad Ali</creatorcontrib><creatorcontrib>Fetecau, Constantin</creatorcontrib><creatorcontrib>Vieru, Dumitru</creatorcontrib><title>Natural convection flows of Prabhakar-like fractional Maxwell fluids with generalized thermal transport</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>Natural convective flows of Prabhakar-like fractional viscoelastic fluids over an infinite vertical heated wall are studied by introducing the generalized fractional constitutive equations for the stress-shear rate and thermal flux density vector. The generalized memory effects are described by the time-fractional Prabhakar derivative. Closed-form solutions for the non-dimensional velocity and temperature fields are determined using the method of integral transform. The velocity and heat transfer of Prabhakar-like fractional Maxwell fluids with generalized thermal transport are compared with ordinary Maxwell fluids with generalized thermal transport and with the ordinary viscoelastic fluids with classical Fourier thermal flux. Solutions of the generalized model are particularized into solutions corresponding to flows and heat transfer with Caputo memory, respectively, to flows of the ordinary fluids with ordinary heat transfer. The use of Prabhakar operators shows the possibility of a convenient choice of fractional parameters such that to have a very good fitting between theoretical and experimental data.</description><subject>Analytical Chemistry</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Comparative analysis</subject><subject>Computational fluid dynamics</subject><subject>Constitutive equations</subject><subject>Constitutive relationships</subject><subject>Convective flow</subject><subject>Flux density</subject><subject>Free convection</subject><subject>Heat transfer</subject><subject>Heat transmission</subject><subject>Inorganic Chemistry</subject><subject>Integral transforms</subject><subject>Maxwell fluids</subject><subject>Measurement Science and Instrumentation</subject><subject>Operators (mathematics)</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Shear rate</subject><subject>Thermoelectricity</subject><subject>Viscoelastic fluids</subject><subject>Viscoelasticity</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kUFP3DAQhSNUpNKFP9BTJE49BMZOnNjH1aoFpIUiWs6WccZZQzZebIfd9tdjNpUQl2oOM7K-9_Tkl2VfCZwRgOY8EBBNWQCFAgQvWQEH2RFhnBdU0PpTust014TB5-xLCI8AIASQo6y7UXH0qs-1G15QR-uG3PRuG3Jn8luvHlbqSfmit0-YG6_2QKKv1W6LfZ_Q0bYh39q4yjscMDnZv9jmcYV-nbjo1RA2zsfj7NCoPuDJvz3L7n98_724LJY_L64W82WhKypigaSF2rQlowQ0NUbUdWMYaVqmFeNaNBXVTY36gaIhVasa5KphAmoNXCvg5Sw7nXw33j2PGKJ8dKNPkYOklagEAS6qRJ1NVKd6lHYwLgXVaVpc2_QTaGx6n9esZCXh4s322wdBYiLuYqfGEOTVr7uPLJ1Y7V0IHo3ceLtW_o8kIN_aklNbMrUl921JSKJyEoUEDx3699z_Ub0CC8SYaA</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Shah, Nehad Ali</creator><creator>Fetecau, Constantin</creator><creator>Vieru, Dumitru</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><orcidid>https://orcid.org/0000-0001-9989-8452</orcidid></search><sort><creationdate>20210201</creationdate><title>Natural convection flows of Prabhakar-like fractional Maxwell fluids with generalized thermal transport</title><author>Shah, Nehad Ali ; Fetecau, Constantin ; Vieru, Dumitru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-e1d06fd35210c2ff9667f517d5ca58c9742c76ecb2ef14da7e8a75906c08ca083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analytical Chemistry</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Comparative analysis</topic><topic>Computational fluid dynamics</topic><topic>Constitutive equations</topic><topic>Constitutive relationships</topic><topic>Convective flow</topic><topic>Flux density</topic><topic>Free convection</topic><topic>Heat transfer</topic><topic>Heat transmission</topic><topic>Inorganic Chemistry</topic><topic>Integral transforms</topic><topic>Maxwell fluids</topic><topic>Measurement Science and Instrumentation</topic><topic>Operators (mathematics)</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Shear rate</topic><topic>Thermoelectricity</topic><topic>Viscoelastic fluids</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shah, Nehad Ali</creatorcontrib><creatorcontrib>Fetecau, Constantin</creatorcontrib><creatorcontrib>Vieru, Dumitru</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shah, Nehad Ali</au><au>Fetecau, Constantin</au><au>Vieru, Dumitru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Natural convection flows of Prabhakar-like fractional Maxwell fluids with generalized thermal transport</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>143</volume><issue>3</issue><spage>2245</spage><epage>2258</epage><pages>2245-2258</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>Natural convective flows of Prabhakar-like fractional viscoelastic fluids over an infinite vertical heated wall are studied by introducing the generalized fractional constitutive equations for the stress-shear rate and thermal flux density vector. The generalized memory effects are described by the time-fractional Prabhakar derivative. Closed-form solutions for the non-dimensional velocity and temperature fields are determined using the method of integral transform. The velocity and heat transfer of Prabhakar-like fractional Maxwell fluids with generalized thermal transport are compared with ordinary Maxwell fluids with generalized thermal transport and with the ordinary viscoelastic fluids with classical Fourier thermal flux. Solutions of the generalized model are particularized into solutions corresponding to flows and heat transfer with Caputo memory, respectively, to flows of the ordinary fluids with ordinary heat transfer. The use of Prabhakar operators shows the possibility of a convenient choice of fractional parameters such that to have a very good fitting between theoretical and experimental data.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10973-020-09835-0</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9989-8452</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1388-6150
ispartof Journal of thermal analysis and calorimetry, 2021-02, Vol.143 (3), p.2245-2258
issn 1388-6150
1588-2926
language eng
recordid cdi_proquest_journals_2494910894
source Springer Journals
subjects Analytical Chemistry
Chemistry
Chemistry and Materials Science
Comparative analysis
Computational fluid dynamics
Constitutive equations
Constitutive relationships
Convective flow
Flux density
Free convection
Heat transfer
Heat transmission
Inorganic Chemistry
Integral transforms
Maxwell fluids
Measurement Science and Instrumentation
Operators (mathematics)
Physical Chemistry
Polymer Sciences
Shear rate
Thermoelectricity
Viscoelastic fluids
Viscoelasticity
title Natural convection flows of Prabhakar-like fractional Maxwell fluids with generalized thermal transport
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A43%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Natural%20convection%20flows%20of%20Prabhakar-like%20fractional%20Maxwell%20fluids%20with%20generalized%20thermal%20transport&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Shah,%20Nehad%20Ali&rft.date=2021-02-01&rft.volume=143&rft.issue=3&rft.spage=2245&rft.epage=2258&rft.pages=2245-2258&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-020-09835-0&rft_dat=%3Cgale_proqu%3EA653531898%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2494910894&rft_id=info:pmid/&rft_galeid=A653531898&rfr_iscdi=true