Wind-induced changes to surface gravity wave shape in shallow water
Wave shape (e.g. wave skewness and asymmetry) impacts sediment transport, remote sensing and ship safety. Previous work showed that wind affects wave shape in intermediate and deep water. Here, we investigate the effect of wind on wave shape in shallow water through a wind-induced surface pressure f...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2021-02, Vol.913, Article A27 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Journal of fluid mechanics |
container_volume | 913 |
creator | Zdyrski, Thomas Feddersen, Falk |
description | Wave shape (e.g. wave skewness and asymmetry) impacts sediment transport, remote sensing and ship safety. Previous work showed that wind affects wave shape in intermediate and deep water. Here, we investigate the effect of wind on wave shape in shallow water through a wind-induced surface pressure for different wind speeds and directions to provide the first theoretical description of wind-induced shape changes. A multiple-scale analysis of long waves propagating over a shallow, flat bottom and forced by a Jeffreys-type surface pressure yields a forward or backward Korteweg–de Vries (KdV)–Burgers equation for the wave profile, depending on the wind direction. The evolution of a symmetric, solitary-wave initial condition is calculated numerically. The resulting wave grows (decays) for onshore (offshore) wind and becomes asymmetric, with the rear face showing the largest shape changes. The wave profile's deviation from a reference solitary wave is primarily a bound wave and trailing, dispersive, decaying tail. The onshore wind increases the wave's energy and skewness with time while decreasing the wave's asymmetry, with the opposite holding for offshore wind. The corresponding wind speeds are shown to be physically realistic, and the shape changes are explained as slow growth followed by rapid evolution according to the unforced KdV equation. |
doi_str_mv | 10.1017/jfm.2021.15 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2494809713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2021_15</cupid><sourcerecordid>2494809713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-3ec51ee465921de72b4ce2ad036af3f57c1244e6d12ab3393f74afe57a70d3cb3</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMoWKsn_0DAo6RmkuzGPUrxCwpeFI8hm0zaLe1uTXZb-u9NacGLh2GG4eEd5iHkFvgEOOiHZVhPBBcwgeKMjECVFdOlKs7JiHMhGIDgl-QqpSXnIHmlR2T63bSe5RoceuoWtp1jon1H0xCDdUjn0W6bfk93dos0LewGadMehtWq2-Vtj_GaXAS7Snhz6mPy9fL8OX1js4_X9-nTjDkpy55JdAUgqrKoBHjUolYOhfVcljbIUGgHQiksPQhbS1nJoJUNWGiruZeulmNyd8zdxO5nwNSbZTfENp80QlXqMT8EMlP3R8rFLqWIwWxis7Zxb4CbgyWTLZmDJQNFptmJtus6Nn6Of6H_8b-5uGkp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2494809713</pqid></control><display><type>article</type><title>Wind-induced changes to surface gravity wave shape in shallow water</title><source>Cambridge University Press Journals Complete</source><creator>Zdyrski, Thomas ; Feddersen, Falk</creator><creatorcontrib>Zdyrski, Thomas ; Feddersen, Falk</creatorcontrib><description>Wave shape (e.g. wave skewness and asymmetry) impacts sediment transport, remote sensing and ship safety. Previous work showed that wind affects wave shape in intermediate and deep water. Here, we investigate the effect of wind on wave shape in shallow water through a wind-induced surface pressure for different wind speeds and directions to provide the first theoretical description of wind-induced shape changes. A multiple-scale analysis of long waves propagating over a shallow, flat bottom and forced by a Jeffreys-type surface pressure yields a forward or backward Korteweg–de Vries (KdV)–Burgers equation for the wave profile, depending on the wind direction. The evolution of a symmetric, solitary-wave initial condition is calculated numerically. The resulting wave grows (decays) for onshore (offshore) wind and becomes asymmetric, with the rear face showing the largest shape changes. The wave profile's deviation from a reference solitary wave is primarily a bound wave and trailing, dispersive, decaying tail. The onshore wind increases the wave's energy and skewness with time while decreasing the wave's asymmetry, with the opposite holding for offshore wind. The corresponding wind speeds are shown to be physically realistic, and the shape changes are explained as slow growth followed by rapid evolution according to the unforced KdV equation.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2021.15</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Asymmetry ; Burgers equation ; Decay ; Deep water ; Evolution ; Gravity waves ; JFM Papers ; Numerical analysis ; Offshore ; Pressure ; Remote sensing ; Sediment transport ; Shallow water ; Shallow water waves ; Shape ; Simulation ; Skewness ; Solitary waves ; Surface gravity waves ; Velocity ; Water waves ; Wave dispersion ; Wave propagation ; Wind ; Wind direction ; Wind effects ; Wind speed</subject><ispartof>Journal of fluid mechanics, 2021-02, Vol.913, Article A27</ispartof><rights>The Author(s), 2021. Published by Cambridge University Press</rights><rights>The Author(s), 2021. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-3ec51ee465921de72b4ce2ad036af3f57c1244e6d12ab3393f74afe57a70d3cb3</citedby><cites>FETCH-LOGICAL-c336t-3ec51ee465921de72b4ce2ad036af3f57c1244e6d12ab3393f74afe57a70d3cb3</cites><orcidid>0000-0002-5488-9074 ; 0000-0003-3039-172X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S002211202100015X/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Zdyrski, Thomas</creatorcontrib><creatorcontrib>Feddersen, Falk</creatorcontrib><title>Wind-induced changes to surface gravity wave shape in shallow water</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Wave shape (e.g. wave skewness and asymmetry) impacts sediment transport, remote sensing and ship safety. Previous work showed that wind affects wave shape in intermediate and deep water. Here, we investigate the effect of wind on wave shape in shallow water through a wind-induced surface pressure for different wind speeds and directions to provide the first theoretical description of wind-induced shape changes. A multiple-scale analysis of long waves propagating over a shallow, flat bottom and forced by a Jeffreys-type surface pressure yields a forward or backward Korteweg–de Vries (KdV)–Burgers equation for the wave profile, depending on the wind direction. The evolution of a symmetric, solitary-wave initial condition is calculated numerically. The resulting wave grows (decays) for onshore (offshore) wind and becomes asymmetric, with the rear face showing the largest shape changes. The wave profile's deviation from a reference solitary wave is primarily a bound wave and trailing, dispersive, decaying tail. The onshore wind increases the wave's energy and skewness with time while decreasing the wave's asymmetry, with the opposite holding for offshore wind. The corresponding wind speeds are shown to be physically realistic, and the shape changes are explained as slow growth followed by rapid evolution according to the unforced KdV equation.</description><subject>Asymmetry</subject><subject>Burgers equation</subject><subject>Decay</subject><subject>Deep water</subject><subject>Evolution</subject><subject>Gravity waves</subject><subject>JFM Papers</subject><subject>Numerical analysis</subject><subject>Offshore</subject><subject>Pressure</subject><subject>Remote sensing</subject><subject>Sediment transport</subject><subject>Shallow water</subject><subject>Shallow water waves</subject><subject>Shape</subject><subject>Simulation</subject><subject>Skewness</subject><subject>Solitary waves</subject><subject>Surface gravity waves</subject><subject>Velocity</subject><subject>Water waves</subject><subject>Wave dispersion</subject><subject>Wave propagation</subject><subject>Wind</subject><subject>Wind direction</subject><subject>Wind effects</subject><subject>Wind speed</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkE1LAzEQhoMoWKsn_0DAo6RmkuzGPUrxCwpeFI8hm0zaLe1uTXZb-u9NacGLh2GG4eEd5iHkFvgEOOiHZVhPBBcwgeKMjECVFdOlKs7JiHMhGIDgl-QqpSXnIHmlR2T63bSe5RoceuoWtp1jon1H0xCDdUjn0W6bfk93dos0LewGadMehtWq2-Vtj_GaXAS7Snhz6mPy9fL8OX1js4_X9-nTjDkpy55JdAUgqrKoBHjUolYOhfVcljbIUGgHQiksPQhbS1nJoJUNWGiruZeulmNyd8zdxO5nwNSbZTfENp80QlXqMT8EMlP3R8rFLqWIwWxis7Zxb4CbgyWTLZmDJQNFptmJtus6Nn6Of6H_8b-5uGkp</recordid><startdate>20210226</startdate><enddate>20210226</enddate><creator>Zdyrski, Thomas</creator><creator>Feddersen, Falk</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-5488-9074</orcidid><orcidid>https://orcid.org/0000-0003-3039-172X</orcidid></search><sort><creationdate>20210226</creationdate><title>Wind-induced changes to surface gravity wave shape in shallow water</title><author>Zdyrski, Thomas ; Feddersen, Falk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-3ec51ee465921de72b4ce2ad036af3f57c1244e6d12ab3393f74afe57a70d3cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymmetry</topic><topic>Burgers equation</topic><topic>Decay</topic><topic>Deep water</topic><topic>Evolution</topic><topic>Gravity waves</topic><topic>JFM Papers</topic><topic>Numerical analysis</topic><topic>Offshore</topic><topic>Pressure</topic><topic>Remote sensing</topic><topic>Sediment transport</topic><topic>Shallow water</topic><topic>Shallow water waves</topic><topic>Shape</topic><topic>Simulation</topic><topic>Skewness</topic><topic>Solitary waves</topic><topic>Surface gravity waves</topic><topic>Velocity</topic><topic>Water waves</topic><topic>Wave dispersion</topic><topic>Wave propagation</topic><topic>Wind</topic><topic>Wind direction</topic><topic>Wind effects</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zdyrski, Thomas</creatorcontrib><creatorcontrib>Feddersen, Falk</creatorcontrib><collection>Cambridge University Press Wholly Gold Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zdyrski, Thomas</au><au>Feddersen, Falk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wind-induced changes to surface gravity wave shape in shallow water</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2021-02-26</date><risdate>2021</risdate><volume>913</volume><artnum>A27</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>Wave shape (e.g. wave skewness and asymmetry) impacts sediment transport, remote sensing and ship safety. Previous work showed that wind affects wave shape in intermediate and deep water. Here, we investigate the effect of wind on wave shape in shallow water through a wind-induced surface pressure for different wind speeds and directions to provide the first theoretical description of wind-induced shape changes. A multiple-scale analysis of long waves propagating over a shallow, flat bottom and forced by a Jeffreys-type surface pressure yields a forward or backward Korteweg–de Vries (KdV)–Burgers equation for the wave profile, depending on the wind direction. The evolution of a symmetric, solitary-wave initial condition is calculated numerically. The resulting wave grows (decays) for onshore (offshore) wind and becomes asymmetric, with the rear face showing the largest shape changes. The wave profile's deviation from a reference solitary wave is primarily a bound wave and trailing, dispersive, decaying tail. The onshore wind increases the wave's energy and skewness with time while decreasing the wave's asymmetry, with the opposite holding for offshore wind. The corresponding wind speeds are shown to be physically realistic, and the shape changes are explained as slow growth followed by rapid evolution according to the unforced KdV equation.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2021.15</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5488-9074</orcidid><orcidid>https://orcid.org/0000-0003-3039-172X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2021-02, Vol.913, Article A27 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_2494809713 |
source | Cambridge University Press Journals Complete |
subjects | Asymmetry Burgers equation Decay Deep water Evolution Gravity waves JFM Papers Numerical analysis Offshore Pressure Remote sensing Sediment transport Shallow water Shallow water waves Shape Simulation Skewness Solitary waves Surface gravity waves Velocity Water waves Wave dispersion Wave propagation Wind Wind direction Wind effects Wind speed |
title | Wind-induced changes to surface gravity wave shape in shallow water |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A53%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wind-induced%20changes%20to%20surface%20gravity%20wave%20shape%20in%20shallow%20water&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Zdyrski,%20Thomas&rft.date=2021-02-26&rft.volume=913&rft.artnum=A27&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2021.15&rft_dat=%3Cproquest_cross%3E2494809713%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2494809713&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2021_15&rfr_iscdi=true |