Discrete-Time Modeling of COVID-19 Propagation in Argentina with Explicit Delays
We present a new deterministic discrete-time compartmental model of COVID-19 that explicitly takes into account relevant delays related to the stages of the disease, its diagnosis and report system, allowing to represent the presence of imported cases. In addition to developing the model equations,...
Gespeichert in:
Veröffentlicht in: | Computing in science & engineering 2021-01, Vol.23 (1), p.35-45 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 45 |
---|---|
container_issue | 1 |
container_start_page | 35 |
container_title | Computing in science & engineering |
container_volume | 23 |
creator | Bergonzi, Mariana Pecker-Marcosig, Ezequiel Kofman, Ernesto Castro, Rodrigo |
description | We present a new deterministic discrete-time compartmental model of COVID-19 that explicitly takes into account relevant delays related to the stages of the disease, its diagnosis and report system, allowing to represent the presence of imported cases. In addition to developing the model equations, we describe an automatic parameter fitting mechanism using official data on the spread of the virus in Argentina. The result consistently reflects the behavior of the disease with respect to characteristic times: latency, infectious period, report of cases (confirmed and dead), and allows for detecting automatically changes in the reproductive number and in the mortality factor. We also analyse the model's prediction capability and present simulation results assuming different future scenarios. We discuss usage of the model in a closed-loop control scheme, where the explicit presence of delays plays a key role in projecting more realistic dynamics than that of classic continuous-time models. |
doi_str_mv | 10.1109/MCSE.2020.3040700 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2494375919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9272834</ieee_id><sourcerecordid>2699957308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-b67b67ccfd9c352f884fcbbb964c517a7bb303aa521d26b7cc90d1a5478fc2003</originalsourceid><addsrcrecordid>eNpdkU1rGzEQhkVpaNKkP6DkIuill3VGX7vSJRBstw3EOJAPchNardZRWK8cad3W_75abAINCCSYZ15m9CD0lcCEEFAXi-ndfEKBwoQBhwrgAzohQsiCleXTx_FNSaFKIo7R55ReAIBLJT6hYyYUU7SCE3Q788lGN7ji3q8dXoTGdb5f4dDi6fLxelYQhW9j2JiVGXzose_xVVy5fvC9wX_88Iznfzedt37AM9eZXTpDR63pkvtyuE_Rw4_5_fRXcbP8eT29uiksp3wo6rLKx9q2UZYJ2krJW1vXtSq5FaQyVV0zYMbkDRpa1plU0BAjeCVbSwHYKbrc52629do1No8UTac30a9N3OlgvP6_0vtnvQq_taISJBkDvh8CYnjdujTodf4K13Wmd2GbNC2VUqJiIDP67R36Eraxz-tpyhVnlVBEZYrsKRtDStG1b8MQ0KMvPfrSoy998JV7zvc93jn3xmc1VDLO_gHzuo9V</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2494375919</pqid></control><display><type>article</type><title>Discrete-Time Modeling of COVID-19 Propagation in Argentina with Explicit Delays</title><source>IEEE Electronic Library (IEL)</source><creator>Bergonzi, Mariana ; Pecker-Marcosig, Ezequiel ; Kofman, Ernesto ; Castro, Rodrigo</creator><creatorcontrib>Bergonzi, Mariana ; Pecker-Marcosig, Ezequiel ; Kofman, Ernesto ; Castro, Rodrigo</creatorcontrib><description>We present a new deterministic discrete-time compartmental model of COVID-19 that explicitly takes into account relevant delays related to the stages of the disease, its diagnosis and report system, allowing to represent the presence of imported cases. In addition to developing the model equations, we describe an automatic parameter fitting mechanism using official data on the spread of the virus in Argentina. The result consistently reflects the behavior of the disease with respect to characteristic times: latency, infectious period, report of cases (confirmed and dead), and allows for detecting automatically changes in the reproductive number and in the mortality factor. We also analyse the model's prediction capability and present simulation results assuming different future scenarios. We discuss usage of the model in a closed-loop control scheme, where the explicit presence of delays plays a key role in projecting more realistic dynamics than that of classic continuous-time models.</description><identifier>ISSN: 1521-9615</identifier><identifier>EISSN: 1558-366X</identifier><identifier>DOI: 10.1109/MCSE.2020.3040700</identifier><identifier>PMID: 35939270</identifier><identifier>CODEN: CSENFA</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Atmospheric modeling ; Continuous time systems ; Coronaviruses ; COVID-19 ; Discrete-time systems ; Mathematical model ; Sociology ; Statistics ; Theme : Computational Science in the Fight against Covid-19, Part II ; Viral diseases ; Viruses (medical)</subject><ispartof>Computing in science & engineering, 2021-01, Vol.23 (1), p.35-45</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><rights>2020 IEEE</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-b67b67ccfd9c352f884fcbbb964c517a7bb303aa521d26b7cc90d1a5478fc2003</citedby><cites>FETCH-LOGICAL-c424t-b67b67ccfd9c352f884fcbbb964c517a7bb303aa521d26b7cc90d1a5478fc2003</cites><orcidid>0000-0001-7657-3612 ; 0000-0003-4038-5999</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9272834$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,778,782,794,883,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9272834$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bergonzi, Mariana</creatorcontrib><creatorcontrib>Pecker-Marcosig, Ezequiel</creatorcontrib><creatorcontrib>Kofman, Ernesto</creatorcontrib><creatorcontrib>Castro, Rodrigo</creatorcontrib><title>Discrete-Time Modeling of COVID-19 Propagation in Argentina with Explicit Delays</title><title>Computing in science & engineering</title><addtitle>CISE-M</addtitle><description>We present a new deterministic discrete-time compartmental model of COVID-19 that explicitly takes into account relevant delays related to the stages of the disease, its diagnosis and report system, allowing to represent the presence of imported cases. In addition to developing the model equations, we describe an automatic parameter fitting mechanism using official data on the spread of the virus in Argentina. The result consistently reflects the behavior of the disease with respect to characteristic times: latency, infectious period, report of cases (confirmed and dead), and allows for detecting automatically changes in the reproductive number and in the mortality factor. We also analyse the model's prediction capability and present simulation results assuming different future scenarios. We discuss usage of the model in a closed-loop control scheme, where the explicit presence of delays plays a key role in projecting more realistic dynamics than that of classic continuous-time models.</description><subject>Atmospheric modeling</subject><subject>Continuous time systems</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Discrete-time systems</subject><subject>Mathematical model</subject><subject>Sociology</subject><subject>Statistics</subject><subject>Theme : Computational Science in the Fight against Covid-19, Part II</subject><subject>Viral diseases</subject><subject>Viruses (medical)</subject><issn>1521-9615</issn><issn>1558-366X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU1rGzEQhkVpaNKkP6DkIuill3VGX7vSJRBstw3EOJAPchNardZRWK8cad3W_75abAINCCSYZ15m9CD0lcCEEFAXi-ndfEKBwoQBhwrgAzohQsiCleXTx_FNSaFKIo7R55ReAIBLJT6hYyYUU7SCE3Q788lGN7ji3q8dXoTGdb5f4dDi6fLxelYQhW9j2JiVGXzose_xVVy5fvC9wX_88Iznfzedt37AM9eZXTpDR63pkvtyuE_Rw4_5_fRXcbP8eT29uiksp3wo6rLKx9q2UZYJ2krJW1vXtSq5FaQyVV0zYMbkDRpa1plU0BAjeCVbSwHYKbrc52629do1No8UTac30a9N3OlgvP6_0vtnvQq_taISJBkDvh8CYnjdujTodf4K13Wmd2GbNC2VUqJiIDP67R36Eraxz-tpyhVnlVBEZYrsKRtDStG1b8MQ0KMvPfrSoy998JV7zvc93jn3xmc1VDLO_gHzuo9V</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Bergonzi, Mariana</creator><creator>Pecker-Marcosig, Ezequiel</creator><creator>Kofman, Ernesto</creator><creator>Castro, Rodrigo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7657-3612</orcidid><orcidid>https://orcid.org/0000-0003-4038-5999</orcidid></search><sort><creationdate>20210101</creationdate><title>Discrete-Time Modeling of COVID-19 Propagation in Argentina with Explicit Delays</title><author>Bergonzi, Mariana ; Pecker-Marcosig, Ezequiel ; Kofman, Ernesto ; Castro, Rodrigo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-b67b67ccfd9c352f884fcbbb964c517a7bb303aa521d26b7cc90d1a5478fc2003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atmospheric modeling</topic><topic>Continuous time systems</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Discrete-time systems</topic><topic>Mathematical model</topic><topic>Sociology</topic><topic>Statistics</topic><topic>Theme : Computational Science in the Fight against Covid-19, Part II</topic><topic>Viral diseases</topic><topic>Viruses (medical)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bergonzi, Mariana</creatorcontrib><creatorcontrib>Pecker-Marcosig, Ezequiel</creatorcontrib><creatorcontrib>Kofman, Ernesto</creatorcontrib><creatorcontrib>Castro, Rodrigo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computing in science & engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bergonzi, Mariana</au><au>Pecker-Marcosig, Ezequiel</au><au>Kofman, Ernesto</au><au>Castro, Rodrigo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete-Time Modeling of COVID-19 Propagation in Argentina with Explicit Delays</atitle><jtitle>Computing in science & engineering</jtitle><stitle>CISE-M</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>23</volume><issue>1</issue><spage>35</spage><epage>45</epage><pages>35-45</pages><issn>1521-9615</issn><eissn>1558-366X</eissn><coden>CSENFA</coden><abstract>We present a new deterministic discrete-time compartmental model of COVID-19 that explicitly takes into account relevant delays related to the stages of the disease, its diagnosis and report system, allowing to represent the presence of imported cases. In addition to developing the model equations, we describe an automatic parameter fitting mechanism using official data on the spread of the virus in Argentina. The result consistently reflects the behavior of the disease with respect to characteristic times: latency, infectious period, report of cases (confirmed and dead), and allows for detecting automatically changes in the reproductive number and in the mortality factor. We also analyse the model's prediction capability and present simulation results assuming different future scenarios. We discuss usage of the model in a closed-loop control scheme, where the explicit presence of delays plays a key role in projecting more realistic dynamics than that of classic continuous-time models.</abstract><cop>New York</cop><pub>IEEE</pub><pmid>35939270</pmid><doi>10.1109/MCSE.2020.3040700</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7657-3612</orcidid><orcidid>https://orcid.org/0000-0003-4038-5999</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1521-9615 |
ispartof | Computing in science & engineering, 2021-01, Vol.23 (1), p.35-45 |
issn | 1521-9615 1558-366X |
language | eng |
recordid | cdi_proquest_journals_2494375919 |
source | IEEE Electronic Library (IEL) |
subjects | Atmospheric modeling Continuous time systems Coronaviruses COVID-19 Discrete-time systems Mathematical model Sociology Statistics Theme : Computational Science in the Fight against Covid-19, Part II Viral diseases Viruses (medical) |
title | Discrete-Time Modeling of COVID-19 Propagation in Argentina with Explicit Delays |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T10%3A30%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete-Time%20Modeling%20of%20COVID-19%20Propagation%20in%20Argentina%20with%20Explicit%20Delays&rft.jtitle=Computing%20in%20science%20&%20engineering&rft.au=Bergonzi,%20Mariana&rft.date=2021-01-01&rft.volume=23&rft.issue=1&rft.spage=35&rft.epage=45&rft.pages=35-45&rft.issn=1521-9615&rft.eissn=1558-366X&rft.coden=CSENFA&rft_id=info:doi/10.1109/MCSE.2020.3040700&rft_dat=%3Cproquest_RIE%3E2699957308%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2494375919&rft_id=info:pmid/35939270&rft_ieee_id=9272834&rfr_iscdi=true |