Discrete-Time Modeling of COVID-19 Propagation in Argentina with Explicit Delays

We present a new deterministic discrete-time compartmental model of COVID-19 that explicitly takes into account relevant delays related to the stages of the disease, its diagnosis and report system, allowing to represent the presence of imported cases. In addition to developing the model equations,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computing in science & engineering 2021-01, Vol.23 (1), p.35-45
Hauptverfasser: Bergonzi, Mariana, Pecker-Marcosig, Ezequiel, Kofman, Ernesto, Castro, Rodrigo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 45
container_issue 1
container_start_page 35
container_title Computing in science & engineering
container_volume 23
creator Bergonzi, Mariana
Pecker-Marcosig, Ezequiel
Kofman, Ernesto
Castro, Rodrigo
description We present a new deterministic discrete-time compartmental model of COVID-19 that explicitly takes into account relevant delays related to the stages of the disease, its diagnosis and report system, allowing to represent the presence of imported cases. In addition to developing the model equations, we describe an automatic parameter fitting mechanism using official data on the spread of the virus in Argentina. The result consistently reflects the behavior of the disease with respect to characteristic times: latency, infectious period, report of cases (confirmed and dead), and allows for detecting automatically changes in the reproductive number and in the mortality factor. We also analyse the model's prediction capability and present simulation results assuming different future scenarios. We discuss usage of the model in a closed-loop control scheme, where the explicit presence of delays plays a key role in projecting more realistic dynamics than that of classic continuous-time models.
doi_str_mv 10.1109/MCSE.2020.3040700
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2494375919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9272834</ieee_id><sourcerecordid>2699957308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-b67b67ccfd9c352f884fcbbb964c517a7bb303aa521d26b7cc90d1a5478fc2003</originalsourceid><addsrcrecordid>eNpdkU1rGzEQhkVpaNKkP6DkIuill3VGX7vSJRBstw3EOJAPchNardZRWK8cad3W_75abAINCCSYZ15m9CD0lcCEEFAXi-ndfEKBwoQBhwrgAzohQsiCleXTx_FNSaFKIo7R55ReAIBLJT6hYyYUU7SCE3Q788lGN7ji3q8dXoTGdb5f4dDi6fLxelYQhW9j2JiVGXzose_xVVy5fvC9wX_88Iznfzedt37AM9eZXTpDR63pkvtyuE_Rw4_5_fRXcbP8eT29uiksp3wo6rLKx9q2UZYJ2krJW1vXtSq5FaQyVV0zYMbkDRpa1plU0BAjeCVbSwHYKbrc52629do1No8UTac30a9N3OlgvP6_0vtnvQq_taISJBkDvh8CYnjdujTodf4K13Wmd2GbNC2VUqJiIDP67R36Eraxz-tpyhVnlVBEZYrsKRtDStG1b8MQ0KMvPfrSoy998JV7zvc93jn3xmc1VDLO_gHzuo9V</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2494375919</pqid></control><display><type>article</type><title>Discrete-Time Modeling of COVID-19 Propagation in Argentina with Explicit Delays</title><source>IEEE Electronic Library (IEL)</source><creator>Bergonzi, Mariana ; Pecker-Marcosig, Ezequiel ; Kofman, Ernesto ; Castro, Rodrigo</creator><creatorcontrib>Bergonzi, Mariana ; Pecker-Marcosig, Ezequiel ; Kofman, Ernesto ; Castro, Rodrigo</creatorcontrib><description>We present a new deterministic discrete-time compartmental model of COVID-19 that explicitly takes into account relevant delays related to the stages of the disease, its diagnosis and report system, allowing to represent the presence of imported cases. In addition to developing the model equations, we describe an automatic parameter fitting mechanism using official data on the spread of the virus in Argentina. The result consistently reflects the behavior of the disease with respect to characteristic times: latency, infectious period, report of cases (confirmed and dead), and allows for detecting automatically changes in the reproductive number and in the mortality factor. We also analyse the model's prediction capability and present simulation results assuming different future scenarios. We discuss usage of the model in a closed-loop control scheme, where the explicit presence of delays plays a key role in projecting more realistic dynamics than that of classic continuous-time models.</description><identifier>ISSN: 1521-9615</identifier><identifier>EISSN: 1558-366X</identifier><identifier>DOI: 10.1109/MCSE.2020.3040700</identifier><identifier>PMID: 35939270</identifier><identifier>CODEN: CSENFA</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Atmospheric modeling ; Continuous time systems ; Coronaviruses ; COVID-19 ; Discrete-time systems ; Mathematical model ; Sociology ; Statistics ; Theme : Computational Science in the Fight against Covid-19, Part II ; Viral diseases ; Viruses (medical)</subject><ispartof>Computing in science &amp; engineering, 2021-01, Vol.23 (1), p.35-45</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><rights>2020 IEEE</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-b67b67ccfd9c352f884fcbbb964c517a7bb303aa521d26b7cc90d1a5478fc2003</citedby><cites>FETCH-LOGICAL-c424t-b67b67ccfd9c352f884fcbbb964c517a7bb303aa521d26b7cc90d1a5478fc2003</cites><orcidid>0000-0001-7657-3612 ; 0000-0003-4038-5999</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9272834$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,778,782,794,883,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9272834$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bergonzi, Mariana</creatorcontrib><creatorcontrib>Pecker-Marcosig, Ezequiel</creatorcontrib><creatorcontrib>Kofman, Ernesto</creatorcontrib><creatorcontrib>Castro, Rodrigo</creatorcontrib><title>Discrete-Time Modeling of COVID-19 Propagation in Argentina with Explicit Delays</title><title>Computing in science &amp; engineering</title><addtitle>CISE-M</addtitle><description>We present a new deterministic discrete-time compartmental model of COVID-19 that explicitly takes into account relevant delays related to the stages of the disease, its diagnosis and report system, allowing to represent the presence of imported cases. In addition to developing the model equations, we describe an automatic parameter fitting mechanism using official data on the spread of the virus in Argentina. The result consistently reflects the behavior of the disease with respect to characteristic times: latency, infectious period, report of cases (confirmed and dead), and allows for detecting automatically changes in the reproductive number and in the mortality factor. We also analyse the model's prediction capability and present simulation results assuming different future scenarios. We discuss usage of the model in a closed-loop control scheme, where the explicit presence of delays plays a key role in projecting more realistic dynamics than that of classic continuous-time models.</description><subject>Atmospheric modeling</subject><subject>Continuous time systems</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Discrete-time systems</subject><subject>Mathematical model</subject><subject>Sociology</subject><subject>Statistics</subject><subject>Theme : Computational Science in the Fight against Covid-19, Part II</subject><subject>Viral diseases</subject><subject>Viruses (medical)</subject><issn>1521-9615</issn><issn>1558-366X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU1rGzEQhkVpaNKkP6DkIuill3VGX7vSJRBstw3EOJAPchNardZRWK8cad3W_75abAINCCSYZ15m9CD0lcCEEFAXi-ndfEKBwoQBhwrgAzohQsiCleXTx_FNSaFKIo7R55ReAIBLJT6hYyYUU7SCE3Q788lGN7ji3q8dXoTGdb5f4dDi6fLxelYQhW9j2JiVGXzose_xVVy5fvC9wX_88Iznfzedt37AM9eZXTpDR63pkvtyuE_Rw4_5_fRXcbP8eT29uiksp3wo6rLKx9q2UZYJ2krJW1vXtSq5FaQyVV0zYMbkDRpa1plU0BAjeCVbSwHYKbrc52629do1No8UTac30a9N3OlgvP6_0vtnvQq_taISJBkDvh8CYnjdujTodf4K13Wmd2GbNC2VUqJiIDP67R36Eraxz-tpyhVnlVBEZYrsKRtDStG1b8MQ0KMvPfrSoy998JV7zvc93jn3xmc1VDLO_gHzuo9V</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Bergonzi, Mariana</creator><creator>Pecker-Marcosig, Ezequiel</creator><creator>Kofman, Ernesto</creator><creator>Castro, Rodrigo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7657-3612</orcidid><orcidid>https://orcid.org/0000-0003-4038-5999</orcidid></search><sort><creationdate>20210101</creationdate><title>Discrete-Time Modeling of COVID-19 Propagation in Argentina with Explicit Delays</title><author>Bergonzi, Mariana ; Pecker-Marcosig, Ezequiel ; Kofman, Ernesto ; Castro, Rodrigo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-b67b67ccfd9c352f884fcbbb964c517a7bb303aa521d26b7cc90d1a5478fc2003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atmospheric modeling</topic><topic>Continuous time systems</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Discrete-time systems</topic><topic>Mathematical model</topic><topic>Sociology</topic><topic>Statistics</topic><topic>Theme : Computational Science in the Fight against Covid-19, Part II</topic><topic>Viral diseases</topic><topic>Viruses (medical)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bergonzi, Mariana</creatorcontrib><creatorcontrib>Pecker-Marcosig, Ezequiel</creatorcontrib><creatorcontrib>Kofman, Ernesto</creatorcontrib><creatorcontrib>Castro, Rodrigo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computing in science &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bergonzi, Mariana</au><au>Pecker-Marcosig, Ezequiel</au><au>Kofman, Ernesto</au><au>Castro, Rodrigo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete-Time Modeling of COVID-19 Propagation in Argentina with Explicit Delays</atitle><jtitle>Computing in science &amp; engineering</jtitle><stitle>CISE-M</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>23</volume><issue>1</issue><spage>35</spage><epage>45</epage><pages>35-45</pages><issn>1521-9615</issn><eissn>1558-366X</eissn><coden>CSENFA</coden><abstract>We present a new deterministic discrete-time compartmental model of COVID-19 that explicitly takes into account relevant delays related to the stages of the disease, its diagnosis and report system, allowing to represent the presence of imported cases. In addition to developing the model equations, we describe an automatic parameter fitting mechanism using official data on the spread of the virus in Argentina. The result consistently reflects the behavior of the disease with respect to characteristic times: latency, infectious period, report of cases (confirmed and dead), and allows for detecting automatically changes in the reproductive number and in the mortality factor. We also analyse the model's prediction capability and present simulation results assuming different future scenarios. We discuss usage of the model in a closed-loop control scheme, where the explicit presence of delays plays a key role in projecting more realistic dynamics than that of classic continuous-time models.</abstract><cop>New York</cop><pub>IEEE</pub><pmid>35939270</pmid><doi>10.1109/MCSE.2020.3040700</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7657-3612</orcidid><orcidid>https://orcid.org/0000-0003-4038-5999</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1521-9615
ispartof Computing in science & engineering, 2021-01, Vol.23 (1), p.35-45
issn 1521-9615
1558-366X
language eng
recordid cdi_proquest_journals_2494375919
source IEEE Electronic Library (IEL)
subjects Atmospheric modeling
Continuous time systems
Coronaviruses
COVID-19
Discrete-time systems
Mathematical model
Sociology
Statistics
Theme : Computational Science in the Fight against Covid-19, Part II
Viral diseases
Viruses (medical)
title Discrete-Time Modeling of COVID-19 Propagation in Argentina with Explicit Delays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T10%3A30%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete-Time%20Modeling%20of%20COVID-19%20Propagation%20in%20Argentina%20with%20Explicit%20Delays&rft.jtitle=Computing%20in%20science%20&%20engineering&rft.au=Bergonzi,%20Mariana&rft.date=2021-01-01&rft.volume=23&rft.issue=1&rft.spage=35&rft.epage=45&rft.pages=35-45&rft.issn=1521-9615&rft.eissn=1558-366X&rft.coden=CSENFA&rft_id=info:doi/10.1109/MCSE.2020.3040700&rft_dat=%3Cproquest_RIE%3E2699957308%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2494375919&rft_id=info:pmid/35939270&rft_ieee_id=9272834&rfr_iscdi=true