Predicting antigen specificity of single T cells based on TCR CDR 3 regions

It has recently become possible to simultaneously assay T‐cell specificity with respect to large sets of antigens and the T‐cell receptor sequence in high‐throughput single‐cell experiments. Leveraging this new type of data, we propose and benchmark a collection of deep learning architectures to mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular systems biology 2020-08, Vol.16 (8)
Hauptverfasser: Fischer, David S, Wu, Yihan, Schubert, Benjamin, Theis, Fabian J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Molecular systems biology
container_volume 16
creator Fischer, David S
Wu, Yihan
Schubert, Benjamin
Theis, Fabian J
description It has recently become possible to simultaneously assay T‐cell specificity with respect to large sets of antigens and the T‐cell receptor sequence in high‐throughput single‐cell experiments. Leveraging this new type of data, we propose and benchmark a collection of deep learning architectures to model T‐cell specificity in single cells. In agreement with previous results, we found that models that treat antigens as categorical outcome variables outperform those that model the TCR and antigen sequence jointly. Moreover, we show that variability in single‐cell immune repertoire screens can be mitigated by modeling cell‐specific covariates. Lastly, we demonstrate that the number of bound pMHC complexes can be predicted in a continuous fashion providing a gateway to disentangle cell‐to‐dextramer binding strength and receptor‐to‐pMHC affinity. We provide these models in the Python package TcellMatch to allow imputation of antigen specificities in single‐cell RNA‐seq studies on T cells without the need for MHC staining.
doi_str_mv 10.15252/msb.20199416
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2494307685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2494307685</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1496-addd1992fecec5f677ca283db75307aaca4da6d7c4ade6e94fde1ca19736a2323</originalsourceid><addsrcrecordid>eNpNkM1KAzEUhYMoWKtL9wHXUyc_k0yWMv5CQSl1HW6Tm5IynanJdNG38Vl8Mger4OoeuIdzDh8h16ycsYpX_HabVzNeMmMkUydkwrSUheSGn_7T5-Qi501ZiprVfELmbwl9dEPs1hS6Ia6xo3mHLobo4nCgfaB5_LVIl9Rh22a6goz-67Pv6LJZ0OZ-QQVNuI59ly_JWYA249XvnZL3x4dl81zMX59emrt54Zg0qgDv_TiSB3ToqqC0dsBr4Ve6EqUGcCA9KK-dBI8KjQwemQNmtFDABRdTcnPM3aX-Y495sJt-n7qx0nJp5Bii6mp0FUeXS33OCYPdpbiFdLCstD_A7AjM_gET352dXro</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2494307685</pqid></control><display><type>article</type><title>Predicting antigen specificity of single T cells based on TCR CDR 3 regions</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>Wiley Online Library All Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Fischer, David S ; Wu, Yihan ; Schubert, Benjamin ; Theis, Fabian J</creator><creatorcontrib>Fischer, David S ; Wu, Yihan ; Schubert, Benjamin ; Theis, Fabian J</creatorcontrib><description>It has recently become possible to simultaneously assay T‐cell specificity with respect to large sets of antigens and the T‐cell receptor sequence in high‐throughput single‐cell experiments. Leveraging this new type of data, we propose and benchmark a collection of deep learning architectures to model T‐cell specificity in single cells. In agreement with previous results, we found that models that treat antigens as categorical outcome variables outperform those that model the TCR and antigen sequence jointly. Moreover, we show that variability in single‐cell immune repertoire screens can be mitigated by modeling cell‐specific covariates. Lastly, we demonstrate that the number of bound pMHC complexes can be predicted in a continuous fashion providing a gateway to disentangle cell‐to‐dextramer binding strength and receptor‐to‐pMHC affinity. We provide these models in the Python package TcellMatch to allow imputation of antigen specificities in single‐cell RNA‐seq studies on T cells without the need for MHC staining.</description><identifier>ISSN: 1744-4292</identifier><identifier>EISSN: 1744-4292</identifier><identifier>DOI: 10.15252/msb.20199416</identifier><language>eng</language><publisher>London: EMBO Press</publisher><subject>Antigens ; Datasets ; Deep learning ; Genomics ; Lymphocytes ; Lymphocytes T ; Major histocompatibility complex ; Peptides ; Proteins ; Receptors ; Ribonucleic acid ; RNA ; T cell receptors</subject><ispartof>Molecular systems biology, 2020-08, Vol.16 (8)</ispartof><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1496-addd1992fecec5f677ca283db75307aaca4da6d7c4ade6e94fde1ca19736a2323</citedby><cites>FETCH-LOGICAL-c1496-addd1992fecec5f677ca283db75307aaca4da6d7c4ade6e94fde1ca19736a2323</cites><orcidid>0000-0002-1293-7656 ; 0000-0002-2419-1943 ; 0000-0003-3412-1102 ; 0000-0003-2718-8704</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27923,27924</link.rule.ids></links><search><creatorcontrib>Fischer, David S</creatorcontrib><creatorcontrib>Wu, Yihan</creatorcontrib><creatorcontrib>Schubert, Benjamin</creatorcontrib><creatorcontrib>Theis, Fabian J</creatorcontrib><title>Predicting antigen specificity of single T cells based on TCR CDR 3 regions</title><title>Molecular systems biology</title><description>It has recently become possible to simultaneously assay T‐cell specificity with respect to large sets of antigens and the T‐cell receptor sequence in high‐throughput single‐cell experiments. Leveraging this new type of data, we propose and benchmark a collection of deep learning architectures to model T‐cell specificity in single cells. In agreement with previous results, we found that models that treat antigens as categorical outcome variables outperform those that model the TCR and antigen sequence jointly. Moreover, we show that variability in single‐cell immune repertoire screens can be mitigated by modeling cell‐specific covariates. Lastly, we demonstrate that the number of bound pMHC complexes can be predicted in a continuous fashion providing a gateway to disentangle cell‐to‐dextramer binding strength and receptor‐to‐pMHC affinity. We provide these models in the Python package TcellMatch to allow imputation of antigen specificities in single‐cell RNA‐seq studies on T cells without the need for MHC staining.</description><subject>Antigens</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Genomics</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Major histocompatibility complex</subject><subject>Peptides</subject><subject>Proteins</subject><subject>Receptors</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>T cell receptors</subject><issn>1744-4292</issn><issn>1744-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpNkM1KAzEUhYMoWKtL9wHXUyc_k0yWMv5CQSl1HW6Tm5IynanJdNG38Vl8Mger4OoeuIdzDh8h16ycsYpX_HabVzNeMmMkUydkwrSUheSGn_7T5-Qi501ZiprVfELmbwl9dEPs1hS6Ia6xo3mHLobo4nCgfaB5_LVIl9Rh22a6goz-67Pv6LJZ0OZ-QQVNuI59ly_JWYA249XvnZL3x4dl81zMX59emrt54Zg0qgDv_TiSB3ToqqC0dsBr4Ve6EqUGcCA9KK-dBI8KjQwemQNmtFDABRdTcnPM3aX-Y495sJt-n7qx0nJp5Bii6mp0FUeXS33OCYPdpbiFdLCstD_A7AjM_gET352dXro</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Fischer, David S</creator><creator>Wu, Yihan</creator><creator>Schubert, Benjamin</creator><creator>Theis, Fabian J</creator><general>EMBO Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-1293-7656</orcidid><orcidid>https://orcid.org/0000-0002-2419-1943</orcidid><orcidid>https://orcid.org/0000-0003-3412-1102</orcidid><orcidid>https://orcid.org/0000-0003-2718-8704</orcidid></search><sort><creationdate>202008</creationdate><title>Predicting antigen specificity of single T cells based on TCR CDR 3 regions</title><author>Fischer, David S ; Wu, Yihan ; Schubert, Benjamin ; Theis, Fabian J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1496-addd1992fecec5f677ca283db75307aaca4da6d7c4ade6e94fde1ca19736a2323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antigens</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Genomics</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Major histocompatibility complex</topic><topic>Peptides</topic><topic>Proteins</topic><topic>Receptors</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>T cell receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fischer, David S</creatorcontrib><creatorcontrib>Wu, Yihan</creatorcontrib><creatorcontrib>Schubert, Benjamin</creatorcontrib><creatorcontrib>Theis, Fabian J</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Molecular systems biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fischer, David S</au><au>Wu, Yihan</au><au>Schubert, Benjamin</au><au>Theis, Fabian J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting antigen specificity of single T cells based on TCR CDR 3 regions</atitle><jtitle>Molecular systems biology</jtitle><date>2020-08</date><risdate>2020</risdate><volume>16</volume><issue>8</issue><issn>1744-4292</issn><eissn>1744-4292</eissn><abstract>It has recently become possible to simultaneously assay T‐cell specificity with respect to large sets of antigens and the T‐cell receptor sequence in high‐throughput single‐cell experiments. Leveraging this new type of data, we propose and benchmark a collection of deep learning architectures to model T‐cell specificity in single cells. In agreement with previous results, we found that models that treat antigens as categorical outcome variables outperform those that model the TCR and antigen sequence jointly. Moreover, we show that variability in single‐cell immune repertoire screens can be mitigated by modeling cell‐specific covariates. Lastly, we demonstrate that the number of bound pMHC complexes can be predicted in a continuous fashion providing a gateway to disentangle cell‐to‐dextramer binding strength and receptor‐to‐pMHC affinity. We provide these models in the Python package TcellMatch to allow imputation of antigen specificities in single‐cell RNA‐seq studies on T cells without the need for MHC staining.</abstract><cop>London</cop><pub>EMBO Press</pub><doi>10.15252/msb.20199416</doi><orcidid>https://orcid.org/0000-0002-1293-7656</orcidid><orcidid>https://orcid.org/0000-0002-2419-1943</orcidid><orcidid>https://orcid.org/0000-0003-3412-1102</orcidid><orcidid>https://orcid.org/0000-0003-2718-8704</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1744-4292
ispartof Molecular systems biology, 2020-08, Vol.16 (8)
issn 1744-4292
1744-4292
language eng
recordid cdi_proquest_journals_2494307685
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; Wiley Online Library All Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Antigens
Datasets
Deep learning
Genomics
Lymphocytes
Lymphocytes T
Major histocompatibility complex
Peptides
Proteins
Receptors
Ribonucleic acid
RNA
T cell receptors
title Predicting antigen specificity of single T cells based on TCR CDR 3 regions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A09%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20antigen%20specificity%20of%20single%20T%20cells%20based%C2%A0on%20TCR%20CDR%203%20regions&rft.jtitle=Molecular%20systems%20biology&rft.au=Fischer,%20David%20S&rft.date=2020-08&rft.volume=16&rft.issue=8&rft.issn=1744-4292&rft.eissn=1744-4292&rft_id=info:doi/10.15252/msb.20199416&rft_dat=%3Cproquest_cross%3E2494307685%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2494307685&rft_id=info:pmid/&rfr_iscdi=true