Kinetics of the hydrogen defect in congruent LiMO3

Hydrogen incorporation during crystal growth or other treatment has attracted research interest for a long time, but the diffusion paths and the role of additional defect sites within the lithium metal oxides (LiMO3 with M = Nb, and Ta) are still not fully understood. We investigated the hydrogen di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2021-02, Vol.9 (7), p.2350-2367, Article 2350
Hauptverfasser: Köhler, Thomas, Mehner, Erik, Hanzig, Juliane, Gärtner, Günter, Funke, Claudia, Joseph, Yvonne, Leisegang, Tilmann, Stöcker, Hartmut, Meyer, Dirk C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2367
container_issue 7
container_start_page 2350
container_title Journal of materials chemistry. C, Materials for optical and electronic devices
container_volume 9
creator Köhler, Thomas
Mehner, Erik
Hanzig, Juliane
Gärtner, Günter
Funke, Claudia
Joseph, Yvonne
Leisegang, Tilmann
Stöcker, Hartmut
Meyer, Dirk C
description Hydrogen incorporation during crystal growth or other treatment has attracted research interest for a long time, but the diffusion paths and the role of additional defect sites within the lithium metal oxides (LiMO3 with M = Nb, and Ta) are still not fully understood. We investigated the hydrogen diffusion by crystal orientation- and light polarization-resolved FT-IR spectroscopy. The OH− stretching vibration is modified by the out- and in-diffusion of hydrogen using appropriate temperature and atmosphere conditions. An isotropic out- and in-diffusion in the congruent as-grown materials was observed. For C-LiNbO3 a higher diffusion rate and a lower activation energy than in C-LiTaO3 were found. In comparison to C-LiTaO3, a possible reason could be the Ta interstitial defect cluster, which limits the diffusion through the empty octahedral sites. The in-diffusion coefficients of reduced crystals are almost two orders of magnitude higher compared to those of the as-grown materials. Obviously, the hydrogen diffusion is promoted by the presence of oxygen and lithium vacancies. Since the defect sites are decorated with hydrogen, the hydrogen saturation concentration depends on the defect concentration. Finally, the same diffusion rate is observed for reduced LiTaO3 and LiNbO3. Consequently, vacancy formation is lifting the diffusion blocking by Ta interstitial defects.
doi_str_mv 10.1039/d0tc05236a
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2494164732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2494164732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-6878e4788ca79472d938c074f7bed59b571d18ae619c066d976d5d423aa08a7d3</originalsourceid><addsrcrecordid>eNpNkEtLAzEcxIMoWGovfoKA59V_HpvHUYqP4koveg5pkm1TSqJJ9uC3t1JB5zJz-DEDg9A1gVsCTN95aA56yoQ9QzMKPXSyZ_z8X75Ei1r3cJQiQgk9Q_QlptCiqziPuO0C3n35krchYR_G4BqOCbuctmUKqeEhvq7ZFboY7aGGxa_P0fvjw9vyuRvWT6vl_dA5KkjrhJIqcKmUs1JzSb1myoHko9wE3-tNL4knygZBtAMhvJbC955TZi0oKz2bo5tT70fJn1OozezzVNJx0lCuORFcMnqk4ES5kmstYTQuNttiTq3YeDAEzM855u8c9g0EY1U0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2494164732</pqid></control><display><type>article</type><title>Kinetics of the hydrogen defect in congruent LiMO3</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Köhler, Thomas ; Mehner, Erik ; Hanzig, Juliane ; Gärtner, Günter ; Funke, Claudia ; Joseph, Yvonne ; Leisegang, Tilmann ; Stöcker, Hartmut ; Meyer, Dirk C</creator><creatorcontrib>Köhler, Thomas ; Mehner, Erik ; Hanzig, Juliane ; Gärtner, Günter ; Funke, Claudia ; Joseph, Yvonne ; Leisegang, Tilmann ; Stöcker, Hartmut ; Meyer, Dirk C</creatorcontrib><description>Hydrogen incorporation during crystal growth or other treatment has attracted research interest for a long time, but the diffusion paths and the role of additional defect sites within the lithium metal oxides (LiMO3 with M = Nb, and Ta) are still not fully understood. We investigated the hydrogen diffusion by crystal orientation- and light polarization-resolved FT-IR spectroscopy. The OH− stretching vibration is modified by the out- and in-diffusion of hydrogen using appropriate temperature and atmosphere conditions. An isotropic out- and in-diffusion in the congruent as-grown materials was observed. For C-LiNbO3 a higher diffusion rate and a lower activation energy than in C-LiTaO3 were found. In comparison to C-LiTaO3, a possible reason could be the Ta interstitial defect cluster, which limits the diffusion through the empty octahedral sites. The in-diffusion coefficients of reduced crystals are almost two orders of magnitude higher compared to those of the as-grown materials. Obviously, the hydrogen diffusion is promoted by the presence of oxygen and lithium vacancies. Since the defect sites are decorated with hydrogen, the hydrogen saturation concentration depends on the defect concentration. Finally, the same diffusion rate is observed for reduced LiTaO3 and LiNbO3. Consequently, vacancy formation is lifting the diffusion blocking by Ta interstitial defects.</description><identifier>ISSN: 2050-7534</identifier><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/d0tc05236a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Crystal defects ; Crystal growth ; Crystal structure ; Crystal surfaces ; Diffusion barriers ; Diffusion rate ; Hydrogen ; Infrared spectroscopy ; Interstitial defects ; Lithium niobates ; Metal oxides ; Protonation ; Single crystals ; Temperature dependence ; Time dependence ; Vacancies</subject><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2021-02, Vol.9 (7), p.2350-2367, Article 2350</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-6878e4788ca79472d938c074f7bed59b571d18ae619c066d976d5d423aa08a7d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Köhler, Thomas</creatorcontrib><creatorcontrib>Mehner, Erik</creatorcontrib><creatorcontrib>Hanzig, Juliane</creatorcontrib><creatorcontrib>Gärtner, Günter</creatorcontrib><creatorcontrib>Funke, Claudia</creatorcontrib><creatorcontrib>Joseph, Yvonne</creatorcontrib><creatorcontrib>Leisegang, Tilmann</creatorcontrib><creatorcontrib>Stöcker, Hartmut</creatorcontrib><creatorcontrib>Meyer, Dirk C</creatorcontrib><title>Kinetics of the hydrogen defect in congruent LiMO3</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>Hydrogen incorporation during crystal growth or other treatment has attracted research interest for a long time, but the diffusion paths and the role of additional defect sites within the lithium metal oxides (LiMO3 with M = Nb, and Ta) are still not fully understood. We investigated the hydrogen diffusion by crystal orientation- and light polarization-resolved FT-IR spectroscopy. The OH− stretching vibration is modified by the out- and in-diffusion of hydrogen using appropriate temperature and atmosphere conditions. An isotropic out- and in-diffusion in the congruent as-grown materials was observed. For C-LiNbO3 a higher diffusion rate and a lower activation energy than in C-LiTaO3 were found. In comparison to C-LiTaO3, a possible reason could be the Ta interstitial defect cluster, which limits the diffusion through the empty octahedral sites. The in-diffusion coefficients of reduced crystals are almost two orders of magnitude higher compared to those of the as-grown materials. Obviously, the hydrogen diffusion is promoted by the presence of oxygen and lithium vacancies. Since the defect sites are decorated with hydrogen, the hydrogen saturation concentration depends on the defect concentration. Finally, the same diffusion rate is observed for reduced LiTaO3 and LiNbO3. Consequently, vacancy formation is lifting the diffusion blocking by Ta interstitial defects.</description><subject>Crystal defects</subject><subject>Crystal growth</subject><subject>Crystal structure</subject><subject>Crystal surfaces</subject><subject>Diffusion barriers</subject><subject>Diffusion rate</subject><subject>Hydrogen</subject><subject>Infrared spectroscopy</subject><subject>Interstitial defects</subject><subject>Lithium niobates</subject><subject>Metal oxides</subject><subject>Protonation</subject><subject>Single crystals</subject><subject>Temperature dependence</subject><subject>Time dependence</subject><subject>Vacancies</subject><issn>2050-7534</issn><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLAzEcxIMoWGovfoKA59V_HpvHUYqP4koveg5pkm1TSqJJ9uC3t1JB5zJz-DEDg9A1gVsCTN95aA56yoQ9QzMKPXSyZ_z8X75Ei1r3cJQiQgk9Q_QlptCiqziPuO0C3n35krchYR_G4BqOCbuctmUKqeEhvq7ZFboY7aGGxa_P0fvjw9vyuRvWT6vl_dA5KkjrhJIqcKmUs1JzSb1myoHko9wE3-tNL4knygZBtAMhvJbC955TZi0oKz2bo5tT70fJn1OozezzVNJx0lCuORFcMnqk4ES5kmstYTQuNttiTq3YeDAEzM855u8c9g0EY1U0</recordid><startdate>20210221</startdate><enddate>20210221</enddate><creator>Köhler, Thomas</creator><creator>Mehner, Erik</creator><creator>Hanzig, Juliane</creator><creator>Gärtner, Günter</creator><creator>Funke, Claudia</creator><creator>Joseph, Yvonne</creator><creator>Leisegang, Tilmann</creator><creator>Stöcker, Hartmut</creator><creator>Meyer, Dirk C</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20210221</creationdate><title>Kinetics of the hydrogen defect in congruent LiMO3</title><author>Köhler, Thomas ; Mehner, Erik ; Hanzig, Juliane ; Gärtner, Günter ; Funke, Claudia ; Joseph, Yvonne ; Leisegang, Tilmann ; Stöcker, Hartmut ; Meyer, Dirk C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-6878e4788ca79472d938c074f7bed59b571d18ae619c066d976d5d423aa08a7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Crystal defects</topic><topic>Crystal growth</topic><topic>Crystal structure</topic><topic>Crystal surfaces</topic><topic>Diffusion barriers</topic><topic>Diffusion rate</topic><topic>Hydrogen</topic><topic>Infrared spectroscopy</topic><topic>Interstitial defects</topic><topic>Lithium niobates</topic><topic>Metal oxides</topic><topic>Protonation</topic><topic>Single crystals</topic><topic>Temperature dependence</topic><topic>Time dependence</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Köhler, Thomas</creatorcontrib><creatorcontrib>Mehner, Erik</creatorcontrib><creatorcontrib>Hanzig, Juliane</creatorcontrib><creatorcontrib>Gärtner, Günter</creatorcontrib><creatorcontrib>Funke, Claudia</creatorcontrib><creatorcontrib>Joseph, Yvonne</creatorcontrib><creatorcontrib>Leisegang, Tilmann</creatorcontrib><creatorcontrib>Stöcker, Hartmut</creatorcontrib><creatorcontrib>Meyer, Dirk C</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Köhler, Thomas</au><au>Mehner, Erik</au><au>Hanzig, Juliane</au><au>Gärtner, Günter</au><au>Funke, Claudia</au><au>Joseph, Yvonne</au><au>Leisegang, Tilmann</au><au>Stöcker, Hartmut</au><au>Meyer, Dirk C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetics of the hydrogen defect in congruent LiMO3</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2021-02-21</date><risdate>2021</risdate><volume>9</volume><issue>7</issue><spage>2350</spage><epage>2367</epage><pages>2350-2367</pages><artnum>2350</artnum><issn>2050-7534</issn><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>Hydrogen incorporation during crystal growth or other treatment has attracted research interest for a long time, but the diffusion paths and the role of additional defect sites within the lithium metal oxides (LiMO3 with M = Nb, and Ta) are still not fully understood. We investigated the hydrogen diffusion by crystal orientation- and light polarization-resolved FT-IR spectroscopy. The OH− stretching vibration is modified by the out- and in-diffusion of hydrogen using appropriate temperature and atmosphere conditions. An isotropic out- and in-diffusion in the congruent as-grown materials was observed. For C-LiNbO3 a higher diffusion rate and a lower activation energy than in C-LiTaO3 were found. In comparison to C-LiTaO3, a possible reason could be the Ta interstitial defect cluster, which limits the diffusion through the empty octahedral sites. The in-diffusion coefficients of reduced crystals are almost two orders of magnitude higher compared to those of the as-grown materials. Obviously, the hydrogen diffusion is promoted by the presence of oxygen and lithium vacancies. Since the defect sites are decorated with hydrogen, the hydrogen saturation concentration depends on the defect concentration. Finally, the same diffusion rate is observed for reduced LiTaO3 and LiNbO3. Consequently, vacancy formation is lifting the diffusion blocking by Ta interstitial defects.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0tc05236a</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7534
ispartof Journal of materials chemistry. C, Materials for optical and electronic devices, 2021-02, Vol.9 (7), p.2350-2367, Article 2350
issn 2050-7534
2050-7526
2050-7534
language eng
recordid cdi_proquest_journals_2494164732
source Royal Society Of Chemistry Journals 2008-
subjects Crystal defects
Crystal growth
Crystal structure
Crystal surfaces
Diffusion barriers
Diffusion rate
Hydrogen
Infrared spectroscopy
Interstitial defects
Lithium niobates
Metal oxides
Protonation
Single crystals
Temperature dependence
Time dependence
Vacancies
title Kinetics of the hydrogen defect in congruent LiMO3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A04%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetics%20of%20the%20hydrogen%20defect%20in%20congruent%20LiMO3&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=K%C3%B6hler,%20Thomas&rft.date=2021-02-21&rft.volume=9&rft.issue=7&rft.spage=2350&rft.epage=2367&rft.pages=2350-2367&rft.artnum=2350&rft.issn=2050-7534&rft.eissn=2050-7534&rft_id=info:doi/10.1039/d0tc05236a&rft_dat=%3Cproquest_cross%3E2494164732%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2494164732&rft_id=info:pmid/&rfr_iscdi=true