Climatic drivers of latitudinal variation in Late Triassic tetrapod diversity

The latitudinal biodiversity gradient (LBG), the increase in biodiversity from the poles to the equator, is one of the most widely recognized global macroecological patterns, yet its deep time evolution and drivers remain uncertain. The Late Triassic (237–201 Ma), a critical interval for the early e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Palaeontology 2021-01, Vol.64 (1), p.101-117
Hauptverfasser: Dunne, Emma M., Farnsworth, Alexander, Greene, Sarah E., Lunt, Daniel J., Butler, Richard J., Mannion, Philip
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 117
container_issue 1
container_start_page 101
container_title Palaeontology
container_volume 64
creator Dunne, Emma M.
Farnsworth, Alexander
Greene, Sarah E.
Lunt, Daniel J.
Butler, Richard J.
Mannion, Philip
description The latitudinal biodiversity gradient (LBG), the increase in biodiversity from the poles to the equator, is one of the most widely recognized global macroecological patterns, yet its deep time evolution and drivers remain uncertain. The Late Triassic (237–201 Ma), a critical interval for the early evolution and radiation of modern tetrapod groups (e.g. crocodylomorphs, dinosaurs, mammaliamorphs), offers a unique opportunity to explore the palaeolatitudinal patterns of tetrapod diversity since it is extensively sampled spatially when compared with other pre‐Cenozoic intervals, particularly at lower palaeolatitudes. Here, we explore palaeolatitudinal patterns of Late Triassic tetrapod diversity by applying sampling standardization to comprehensive occurrence data from the Paleobiology Database (PBDB). We then use palaeoclimatic model simulations to explore the palaeoclimatic ranges occupied by major tetrapod groups, allowing insight into the influence of palaeoclimate on the palaeolatitudinal distribution of these groups. Our results show that Late Triassic tetrapods generally do not conform to a modern‐type LBG; instead, sampling‐standardized species richness is highest at mid‐palaeolatitudes. In contrast, the richness of pseudosuchians (crocodylians and their relatives) is highest at the palaeoequator, a pattern that is retained throughout their subsequent evolutionary history. Pseudosuchians generally occupied a more restricted range of palaeoclimatic conditions than other tetrapod groups, a condition analogous to modern day reptilian ectotherms, while avemetatarsalians (the archosaur group containing dinosaurs and pterosaurs) exhibit comparatively wider ranges, which is more similar to modern endotherms, such as birds and mammals, suggesting important implications for the evolution of thermal physiology in dinosaurs.
doi_str_mv 10.1111/pala.12514
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2494067179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2494067179</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3604-b28cd0510a8aa69f4aa030baa75ec78f6d2812e33dd1dcc7bb99d22c50b723da3</originalsourceid><addsrcrecordid>eNqNkM1LwzAchoMoOKcX_4KCN6UzX22T4yh-QUUP81x-TVLIqO1M0sn-e7N1eBRzSfLjecKbF6FrghckrvsNdLAgNCP8BM0IL7KUS8FO0QxjRlJMmTxHF96vMcY0k_kMvZad_YRgVaKd3Rrnk6FNujgIo7Y9dMkWnI3XoU9sn1QQTLKKA--jEUxwsBl0og-mDbtLdNZC583VcZ-jj8eHVfmcVm9PL-WySoHlmKcNFUrjjGAQALlsOQBmuAEoMqMK0eaaCkINY1oTrVTRNFJqSlWGm4IyDWyObqZ3N274Go0P9XoYXYzra8olx3lBChmp24lSbvDembbeuPhZt6sJrvd11fu66kNdERYT_G2aofXKml6ZXyH2lQkpSM7jCZPShkMn5TD2Iap3_1cjTY607czuj0j1-7JaTuF-AOV4jnM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2494067179</pqid></control><display><type>article</type><title>Climatic drivers of latitudinal variation in Late Triassic tetrapod diversity</title><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Dunne, Emma M. ; Farnsworth, Alexander ; Greene, Sarah E. ; Lunt, Daniel J. ; Butler, Richard J. ; Mannion, Philip</creator><contributor>Mannion, Philip</contributor><creatorcontrib>Dunne, Emma M. ; Farnsworth, Alexander ; Greene, Sarah E. ; Lunt, Daniel J. ; Butler, Richard J. ; Mannion, Philip ; Mannion, Philip</creatorcontrib><description>The latitudinal biodiversity gradient (LBG), the increase in biodiversity from the poles to the equator, is one of the most widely recognized global macroecological patterns, yet its deep time evolution and drivers remain uncertain. The Late Triassic (237–201 Ma), a critical interval for the early evolution and radiation of modern tetrapod groups (e.g. crocodylomorphs, dinosaurs, mammaliamorphs), offers a unique opportunity to explore the palaeolatitudinal patterns of tetrapod diversity since it is extensively sampled spatially when compared with other pre‐Cenozoic intervals, particularly at lower palaeolatitudes. Here, we explore palaeolatitudinal patterns of Late Triassic tetrapod diversity by applying sampling standardization to comprehensive occurrence data from the Paleobiology Database (PBDB). We then use palaeoclimatic model simulations to explore the palaeoclimatic ranges occupied by major tetrapod groups, allowing insight into the influence of palaeoclimate on the palaeolatitudinal distribution of these groups. Our results show that Late Triassic tetrapods generally do not conform to a modern‐type LBG; instead, sampling‐standardized species richness is highest at mid‐palaeolatitudes. In contrast, the richness of pseudosuchians (crocodylians and their relatives) is highest at the palaeoequator, a pattern that is retained throughout their subsequent evolutionary history. Pseudosuchians generally occupied a more restricted range of palaeoclimatic conditions than other tetrapod groups, a condition analogous to modern day reptilian ectotherms, while avemetatarsalians (the archosaur group containing dinosaurs and pterosaurs) exhibit comparatively wider ranges, which is more similar to modern endotherms, such as birds and mammals, suggesting important implications for the evolution of thermal physiology in dinosaurs.</description><identifier>ISSN: 0031-0239</identifier><identifier>EISSN: 1475-4983</identifier><identifier>DOI: 10.1111/pala.12514</identifier><language>eng</language><publisher>HOBOKEN: Wiley</publisher><subject>Biodiversity ; Cenozoic ; Dinosaurs ; diversity ; Equator ; Evolution ; general circulation palaeoclimatic model ; Late Triassic ; latitudinal biodiversity gradient ; Latitudinal variations ; Life Sciences &amp; Biomedicine ; Palaeoclimate ; Paleontology ; Radiation ; Sampling ; Science &amp; Technology ; Species richness ; Standardization ; Tetrapoda ; thermal physiology ; Triassic</subject><ispartof>Palaeontology, 2021-01, Vol.64 (1), p.101-117</ispartof><rights>2020 The Authors. Palaeontology published by John Wiley &amp; Sons Ltd on behalf of The Palaeontological Association</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>36</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000589816400001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a3604-b28cd0510a8aa69f4aa030baa75ec78f6d2812e33dd1dcc7bb99d22c50b723da3</citedby><cites>FETCH-LOGICAL-a3604-b28cd0510a8aa69f4aa030baa75ec78f6d2812e33dd1dcc7bb99d22c50b723da3</cites><orcidid>0000-0001-5585-5338 ; 0000-0003-3585-6928 ; 0000-0003-2136-7541 ; 0000-0002-3025-9043 ; 0000-0002-4989-5904</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpala.12514$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpala.12514$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,39265,45581,45582</link.rule.ids></links><search><contributor>Mannion, Philip</contributor><creatorcontrib>Dunne, Emma M.</creatorcontrib><creatorcontrib>Farnsworth, Alexander</creatorcontrib><creatorcontrib>Greene, Sarah E.</creatorcontrib><creatorcontrib>Lunt, Daniel J.</creatorcontrib><creatorcontrib>Butler, Richard J.</creatorcontrib><creatorcontrib>Mannion, Philip</creatorcontrib><title>Climatic drivers of latitudinal variation in Late Triassic tetrapod diversity</title><title>Palaeontology</title><addtitle>PALAEONTOLOGY</addtitle><description>The latitudinal biodiversity gradient (LBG), the increase in biodiversity from the poles to the equator, is one of the most widely recognized global macroecological patterns, yet its deep time evolution and drivers remain uncertain. The Late Triassic (237–201 Ma), a critical interval for the early evolution and radiation of modern tetrapod groups (e.g. crocodylomorphs, dinosaurs, mammaliamorphs), offers a unique opportunity to explore the palaeolatitudinal patterns of tetrapod diversity since it is extensively sampled spatially when compared with other pre‐Cenozoic intervals, particularly at lower palaeolatitudes. Here, we explore palaeolatitudinal patterns of Late Triassic tetrapod diversity by applying sampling standardization to comprehensive occurrence data from the Paleobiology Database (PBDB). We then use palaeoclimatic model simulations to explore the palaeoclimatic ranges occupied by major tetrapod groups, allowing insight into the influence of palaeoclimate on the palaeolatitudinal distribution of these groups. Our results show that Late Triassic tetrapods generally do not conform to a modern‐type LBG; instead, sampling‐standardized species richness is highest at mid‐palaeolatitudes. In contrast, the richness of pseudosuchians (crocodylians and their relatives) is highest at the palaeoequator, a pattern that is retained throughout their subsequent evolutionary history. Pseudosuchians generally occupied a more restricted range of palaeoclimatic conditions than other tetrapod groups, a condition analogous to modern day reptilian ectotherms, while avemetatarsalians (the archosaur group containing dinosaurs and pterosaurs) exhibit comparatively wider ranges, which is more similar to modern endotherms, such as birds and mammals, suggesting important implications for the evolution of thermal physiology in dinosaurs.</description><subject>Biodiversity</subject><subject>Cenozoic</subject><subject>Dinosaurs</subject><subject>diversity</subject><subject>Equator</subject><subject>Evolution</subject><subject>general circulation palaeoclimatic model</subject><subject>Late Triassic</subject><subject>latitudinal biodiversity gradient</subject><subject>Latitudinal variations</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Palaeoclimate</subject><subject>Paleontology</subject><subject>Radiation</subject><subject>Sampling</subject><subject>Science &amp; Technology</subject><subject>Species richness</subject><subject>Standardization</subject><subject>Tetrapoda</subject><subject>thermal physiology</subject><subject>Triassic</subject><issn>0031-0239</issn><issn>1475-4983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>HGBXW</sourceid><recordid>eNqNkM1LwzAchoMoOKcX_4KCN6UzX22T4yh-QUUP81x-TVLIqO1M0sn-e7N1eBRzSfLjecKbF6FrghckrvsNdLAgNCP8BM0IL7KUS8FO0QxjRlJMmTxHF96vMcY0k_kMvZad_YRgVaKd3Rrnk6FNujgIo7Y9dMkWnI3XoU9sn1QQTLKKA--jEUxwsBl0og-mDbtLdNZC583VcZ-jj8eHVfmcVm9PL-WySoHlmKcNFUrjjGAQALlsOQBmuAEoMqMK0eaaCkINY1oTrVTRNFJqSlWGm4IyDWyObqZ3N274Go0P9XoYXYzra8olx3lBChmp24lSbvDembbeuPhZt6sJrvd11fu66kNdERYT_G2aofXKml6ZXyH2lQkpSM7jCZPShkMn5TD2Iap3_1cjTY607czuj0j1-7JaTuF-AOV4jnM</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Dunne, Emma M.</creator><creator>Farnsworth, Alexander</creator><creator>Greene, Sarah E.</creator><creator>Lunt, Daniel J.</creator><creator>Butler, Richard J.</creator><creator>Mannion, Philip</creator><general>Wiley</general><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0001-5585-5338</orcidid><orcidid>https://orcid.org/0000-0003-3585-6928</orcidid><orcidid>https://orcid.org/0000-0003-2136-7541</orcidid><orcidid>https://orcid.org/0000-0002-3025-9043</orcidid><orcidid>https://orcid.org/0000-0002-4989-5904</orcidid></search><sort><creationdate>202101</creationdate><title>Climatic drivers of latitudinal variation in Late Triassic tetrapod diversity</title><author>Dunne, Emma M. ; Farnsworth, Alexander ; Greene, Sarah E. ; Lunt, Daniel J. ; Butler, Richard J. ; Mannion, Philip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3604-b28cd0510a8aa69f4aa030baa75ec78f6d2812e33dd1dcc7bb99d22c50b723da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biodiversity</topic><topic>Cenozoic</topic><topic>Dinosaurs</topic><topic>diversity</topic><topic>Equator</topic><topic>Evolution</topic><topic>general circulation palaeoclimatic model</topic><topic>Late Triassic</topic><topic>latitudinal biodiversity gradient</topic><topic>Latitudinal variations</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Palaeoclimate</topic><topic>Paleontology</topic><topic>Radiation</topic><topic>Sampling</topic><topic>Science &amp; Technology</topic><topic>Species richness</topic><topic>Standardization</topic><topic>Tetrapoda</topic><topic>thermal physiology</topic><topic>Triassic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dunne, Emma M.</creatorcontrib><creatorcontrib>Farnsworth, Alexander</creatorcontrib><creatorcontrib>Greene, Sarah E.</creatorcontrib><creatorcontrib>Lunt, Daniel J.</creatorcontrib><creatorcontrib>Butler, Richard J.</creatorcontrib><creatorcontrib>Mannion, Philip</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Free Content</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Palaeontology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dunne, Emma M.</au><au>Farnsworth, Alexander</au><au>Greene, Sarah E.</au><au>Lunt, Daniel J.</au><au>Butler, Richard J.</au><au>Mannion, Philip</au><au>Mannion, Philip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Climatic drivers of latitudinal variation in Late Triassic tetrapod diversity</atitle><jtitle>Palaeontology</jtitle><stitle>PALAEONTOLOGY</stitle><date>2021-01</date><risdate>2021</risdate><volume>64</volume><issue>1</issue><spage>101</spage><epage>117</epage><pages>101-117</pages><issn>0031-0239</issn><eissn>1475-4983</eissn><abstract>The latitudinal biodiversity gradient (LBG), the increase in biodiversity from the poles to the equator, is one of the most widely recognized global macroecological patterns, yet its deep time evolution and drivers remain uncertain. The Late Triassic (237–201 Ma), a critical interval for the early evolution and radiation of modern tetrapod groups (e.g. crocodylomorphs, dinosaurs, mammaliamorphs), offers a unique opportunity to explore the palaeolatitudinal patterns of tetrapod diversity since it is extensively sampled spatially when compared with other pre‐Cenozoic intervals, particularly at lower palaeolatitudes. Here, we explore palaeolatitudinal patterns of Late Triassic tetrapod diversity by applying sampling standardization to comprehensive occurrence data from the Paleobiology Database (PBDB). We then use palaeoclimatic model simulations to explore the palaeoclimatic ranges occupied by major tetrapod groups, allowing insight into the influence of palaeoclimate on the palaeolatitudinal distribution of these groups. Our results show that Late Triassic tetrapods generally do not conform to a modern‐type LBG; instead, sampling‐standardized species richness is highest at mid‐palaeolatitudes. In contrast, the richness of pseudosuchians (crocodylians and their relatives) is highest at the palaeoequator, a pattern that is retained throughout their subsequent evolutionary history. Pseudosuchians generally occupied a more restricted range of palaeoclimatic conditions than other tetrapod groups, a condition analogous to modern day reptilian ectotherms, while avemetatarsalians (the archosaur group containing dinosaurs and pterosaurs) exhibit comparatively wider ranges, which is more similar to modern endotherms, such as birds and mammals, suggesting important implications for the evolution of thermal physiology in dinosaurs.</abstract><cop>HOBOKEN</cop><pub>Wiley</pub><doi>10.1111/pala.12514</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5585-5338</orcidid><orcidid>https://orcid.org/0000-0003-3585-6928</orcidid><orcidid>https://orcid.org/0000-0003-2136-7541</orcidid><orcidid>https://orcid.org/0000-0002-3025-9043</orcidid><orcidid>https://orcid.org/0000-0002-4989-5904</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-0239
ispartof Palaeontology, 2021-01, Vol.64 (1), p.101-117
issn 0031-0239
1475-4983
language eng
recordid cdi_proquest_journals_2494067179
source Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Biodiversity
Cenozoic
Dinosaurs
diversity
Equator
Evolution
general circulation palaeoclimatic model
Late Triassic
latitudinal biodiversity gradient
Latitudinal variations
Life Sciences & Biomedicine
Palaeoclimate
Paleontology
Radiation
Sampling
Science & Technology
Species richness
Standardization
Tetrapoda
thermal physiology
Triassic
title Climatic drivers of latitudinal variation in Late Triassic tetrapod diversity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T03%3A15%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Climatic%20drivers%20of%20latitudinal%20variation%20in%20Late%20Triassic%20tetrapod%20diversity&rft.jtitle=Palaeontology&rft.au=Dunne,%20Emma%20M.&rft.date=2021-01&rft.volume=64&rft.issue=1&rft.spage=101&rft.epage=117&rft.pages=101-117&rft.issn=0031-0239&rft.eissn=1475-4983&rft_id=info:doi/10.1111/pala.12514&rft_dat=%3Cproquest_cross%3E2494067179%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2494067179&rft_id=info:pmid/&rfr_iscdi=true