Finding distinctions between oral cancer and periodontitis using saliva metabolites and machine learning

Objective The aim of this research is the study of metabolic pathways related to oral cancer and periodontitis along with development of machine‐learning model for elucidation of these diseases based on saliva metabolites of patients. Methods Data mining, metabolomic pathways analysis, study of meta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oral diseases 2021-04, Vol.27 (3), p.484-493
Hauptverfasser: Kouznetsova, Valentina L., Li, Jeremy, Romm, Eden, Tsigelny, Igor F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 493
container_issue 3
container_start_page 484
container_title Oral diseases
container_volume 27
creator Kouznetsova, Valentina L.
Li, Jeremy
Romm, Eden
Tsigelny, Igor F.
description Objective The aim of this research is the study of metabolic pathways related to oral cancer and periodontitis along with development of machine‐learning model for elucidation of these diseases based on saliva metabolites of patients. Methods Data mining, metabolomic pathways analysis, study of metabolite–gene networks related to these diseases. Machine‐learning and deep‐learning methods for development of the model for recognition of oral cancer versus periodontitis, using patients' saliva. Results The most accurate classifications between oral cancer and periodontitis were performed using neural networks, logistic regression and stochastic gradient descent confirmed by the separate 10‐fold cross‐validations. The best results were achieved by the deep‐learning neural network with the TensorFlow program. Accuracy of the resulting model was 79.54%. The other methods, which did not rely on deep learning, were able to achieve comparable, although slightly worse results with respect to accuracy. Conclusion Our results demonstrate a possibility to distinguish oral cancer from periodontal disease by analysis the saliva metabolites of a patient, using machine‐learning methods. These findings may be useful in the development of a non‐invasive method to aid care providers in determining between oral cancer and periodontitis quickly and effectively.
doi_str_mv 10.1111/odi.13591
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2494057723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2494057723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4191-99c7d9ebd76052db8a494a515890ad764e921138359323e78c0649dae8236b623</originalsourceid><addsrcrecordid>eNqN0U1rFTEUBuAgiq3VhX9AAm4UmTYfk5lkWa5WC4VuFNwNmeRce8pMck0ylv57M73XLgTBbBLCcw4nbwh5zdkpr-ssejzlUhn-hBzzjvGGaaGe1rNUbaOE_H5EXuR8yxjvjRTPyZEUfSeYUcfk5gKDx_CDeswFgysYQ6YjlDuAQGOyE3U2OEjUBk93kDD6GAoWzHTJa2G2E_6ydIZixzhhgfxAZ-tuMACdwKZQ3UvybGunDK8O-wn5dvHp6-ZLc3X9-XJzftW4lhveGON6b2D0fceU8KO2rWmt4kobZutlC0ZwLnV9rRQSeu1Y1xpvQQvZjZ2QJ-Tdvu8uxZ8L5DLMmB1Mkw0QlzyIVnLNVM90pW__ordxSaFOV5VpK-qFrOr9XrkUc06wHXYJZ5vuB86GNf6hxj88xF_tm0PHZZzBP8o_eVfwYQ_uYIzb7BBqto-MMaa6TvGerWttp_9fb7DY9fc2cQmllp4dSnGC-3-PPFx_vNzP_huv8a72</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2494057723</pqid></control><display><type>article</type><title>Finding distinctions between oral cancer and periodontitis using saliva metabolites and machine learning</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Kouznetsova, Valentina L. ; Li, Jeremy ; Romm, Eden ; Tsigelny, Igor F.</creator><creatorcontrib>Kouznetsova, Valentina L. ; Li, Jeremy ; Romm, Eden ; Tsigelny, Igor F.</creatorcontrib><description>Objective The aim of this research is the study of metabolic pathways related to oral cancer and periodontitis along with development of machine‐learning model for elucidation of these diseases based on saliva metabolites of patients. Methods Data mining, metabolomic pathways analysis, study of metabolite–gene networks related to these diseases. Machine‐learning and deep‐learning methods for development of the model for recognition of oral cancer versus periodontitis, using patients' saliva. Results The most accurate classifications between oral cancer and periodontitis were performed using neural networks, logistic regression and stochastic gradient descent confirmed by the separate 10‐fold cross‐validations. The best results were achieved by the deep‐learning neural network with the TensorFlow program. Accuracy of the resulting model was 79.54%. The other methods, which did not rely on deep learning, were able to achieve comparable, although slightly worse results with respect to accuracy. Conclusion Our results demonstrate a possibility to distinguish oral cancer from periodontal disease by analysis the saliva metabolites of a patient, using machine‐learning methods. These findings may be useful in the development of a non‐invasive method to aid care providers in determining between oral cancer and periodontitis quickly and effectively.</description><identifier>ISSN: 1354-523X</identifier><identifier>EISSN: 1601-0825</identifier><identifier>DOI: 10.1111/odi.13591</identifier><identifier>PMID: 32762095</identifier><language>eng</language><publisher>HOBOKEN: Wiley</publisher><subject>biomarkers ; Deep learning ; Dentistry ; Dentistry, Oral Surgery &amp; Medicine ; Gum disease ; Humans ; Learning algorithms ; Life Sciences &amp; Biomedicine ; Machine Learning ; metabolic networks ; Metabolic pathways ; Metabolites ; Metabolomics ; Mouth Neoplasms ; Neural networks ; Oral cancer ; Periodontal diseases ; Periodontitis ; Saliva ; Science &amp; Technology ; Stochasticity</subject><ispartof>Oral diseases, 2021-04, Vol.27 (3), p.484-493</ispartof><rights>2020 John Wiley &amp; Sons A/S. Published by John Wiley &amp; Sons Ltd. All rights reserved</rights><rights>2020 John Wiley &amp; Sons A/S. Published by John Wiley &amp; Sons Ltd. All rights reserved.</rights><rights>2021 John Wiley &amp; Sons A/S. Published by John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>31</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000566517000001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c4191-99c7d9ebd76052db8a494a515890ad764e921138359323e78c0649dae8236b623</citedby><cites>FETCH-LOGICAL-c4191-99c7d9ebd76052db8a494a515890ad764e921138359323e78c0649dae8236b623</cites><orcidid>0000-0002-7155-8947</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fodi.13591$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fodi.13591$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,39263,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32762095$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kouznetsova, Valentina L.</creatorcontrib><creatorcontrib>Li, Jeremy</creatorcontrib><creatorcontrib>Romm, Eden</creatorcontrib><creatorcontrib>Tsigelny, Igor F.</creatorcontrib><title>Finding distinctions between oral cancer and periodontitis using saliva metabolites and machine learning</title><title>Oral diseases</title><addtitle>ORAL DIS</addtitle><addtitle>Oral Dis</addtitle><description>Objective The aim of this research is the study of metabolic pathways related to oral cancer and periodontitis along with development of machine‐learning model for elucidation of these diseases based on saliva metabolites of patients. Methods Data mining, metabolomic pathways analysis, study of metabolite–gene networks related to these diseases. Machine‐learning and deep‐learning methods for development of the model for recognition of oral cancer versus periodontitis, using patients' saliva. Results The most accurate classifications between oral cancer and periodontitis were performed using neural networks, logistic regression and stochastic gradient descent confirmed by the separate 10‐fold cross‐validations. The best results were achieved by the deep‐learning neural network with the TensorFlow program. Accuracy of the resulting model was 79.54%. The other methods, which did not rely on deep learning, were able to achieve comparable, although slightly worse results with respect to accuracy. Conclusion Our results demonstrate a possibility to distinguish oral cancer from periodontal disease by analysis the saliva metabolites of a patient, using machine‐learning methods. These findings may be useful in the development of a non‐invasive method to aid care providers in determining between oral cancer and periodontitis quickly and effectively.</description><subject>biomarkers</subject><subject>Deep learning</subject><subject>Dentistry</subject><subject>Dentistry, Oral Surgery &amp; Medicine</subject><subject>Gum disease</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Machine Learning</subject><subject>metabolic networks</subject><subject>Metabolic pathways</subject><subject>Metabolites</subject><subject>Metabolomics</subject><subject>Mouth Neoplasms</subject><subject>Neural networks</subject><subject>Oral cancer</subject><subject>Periodontal diseases</subject><subject>Periodontitis</subject><subject>Saliva</subject><subject>Science &amp; Technology</subject><subject>Stochasticity</subject><issn>1354-523X</issn><issn>1601-0825</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><recordid>eNqN0U1rFTEUBuAgiq3VhX9AAm4UmTYfk5lkWa5WC4VuFNwNmeRce8pMck0ylv57M73XLgTBbBLCcw4nbwh5zdkpr-ssejzlUhn-hBzzjvGGaaGe1rNUbaOE_H5EXuR8yxjvjRTPyZEUfSeYUcfk5gKDx_CDeswFgysYQ6YjlDuAQGOyE3U2OEjUBk93kDD6GAoWzHTJa2G2E_6ydIZixzhhgfxAZ-tuMACdwKZQ3UvybGunDK8O-wn5dvHp6-ZLc3X9-XJzftW4lhveGON6b2D0fceU8KO2rWmt4kobZutlC0ZwLnV9rRQSeu1Y1xpvQQvZjZ2QJ-Tdvu8uxZ8L5DLMmB1Mkw0QlzyIVnLNVM90pW__ordxSaFOV5VpK-qFrOr9XrkUc06wHXYJZ5vuB86GNf6hxj88xF_tm0PHZZzBP8o_eVfwYQ_uYIzb7BBqto-MMaa6TvGerWttp_9fb7DY9fc2cQmllp4dSnGC-3-PPFx_vNzP_huv8a72</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Kouznetsova, Valentina L.</creator><creator>Li, Jeremy</creator><creator>Romm, Eden</creator><creator>Tsigelny, Igor F.</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7155-8947</orcidid></search><sort><creationdate>202104</creationdate><title>Finding distinctions between oral cancer and periodontitis using saliva metabolites and machine learning</title><author>Kouznetsova, Valentina L. ; Li, Jeremy ; Romm, Eden ; Tsigelny, Igor F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4191-99c7d9ebd76052db8a494a515890ad764e921138359323e78c0649dae8236b623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>biomarkers</topic><topic>Deep learning</topic><topic>Dentistry</topic><topic>Dentistry, Oral Surgery &amp; Medicine</topic><topic>Gum disease</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Machine Learning</topic><topic>metabolic networks</topic><topic>Metabolic pathways</topic><topic>Metabolites</topic><topic>Metabolomics</topic><topic>Mouth Neoplasms</topic><topic>Neural networks</topic><topic>Oral cancer</topic><topic>Periodontal diseases</topic><topic>Periodontitis</topic><topic>Saliva</topic><topic>Science &amp; Technology</topic><topic>Stochasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kouznetsova, Valentina L.</creatorcontrib><creatorcontrib>Li, Jeremy</creatorcontrib><creatorcontrib>Romm, Eden</creatorcontrib><creatorcontrib>Tsigelny, Igor F.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Oral diseases</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kouznetsova, Valentina L.</au><au>Li, Jeremy</au><au>Romm, Eden</au><au>Tsigelny, Igor F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finding distinctions between oral cancer and periodontitis using saliva metabolites and machine learning</atitle><jtitle>Oral diseases</jtitle><stitle>ORAL DIS</stitle><addtitle>Oral Dis</addtitle><date>2021-04</date><risdate>2021</risdate><volume>27</volume><issue>3</issue><spage>484</spage><epage>493</epage><pages>484-493</pages><issn>1354-523X</issn><eissn>1601-0825</eissn><abstract>Objective The aim of this research is the study of metabolic pathways related to oral cancer and periodontitis along with development of machine‐learning model for elucidation of these diseases based on saliva metabolites of patients. Methods Data mining, metabolomic pathways analysis, study of metabolite–gene networks related to these diseases. Machine‐learning and deep‐learning methods for development of the model for recognition of oral cancer versus periodontitis, using patients' saliva. Results The most accurate classifications between oral cancer and periodontitis were performed using neural networks, logistic regression and stochastic gradient descent confirmed by the separate 10‐fold cross‐validations. The best results were achieved by the deep‐learning neural network with the TensorFlow program. Accuracy of the resulting model was 79.54%. The other methods, which did not rely on deep learning, were able to achieve comparable, although slightly worse results with respect to accuracy. Conclusion Our results demonstrate a possibility to distinguish oral cancer from periodontal disease by analysis the saliva metabolites of a patient, using machine‐learning methods. These findings may be useful in the development of a non‐invasive method to aid care providers in determining between oral cancer and periodontitis quickly and effectively.</abstract><cop>HOBOKEN</cop><pub>Wiley</pub><pmid>32762095</pmid><doi>10.1111/odi.13591</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7155-8947</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1354-523X
ispartof Oral diseases, 2021-04, Vol.27 (3), p.484-493
issn 1354-523X
1601-0825
language eng
recordid cdi_proquest_journals_2494057723
source MEDLINE; Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects biomarkers
Deep learning
Dentistry
Dentistry, Oral Surgery & Medicine
Gum disease
Humans
Learning algorithms
Life Sciences & Biomedicine
Machine Learning
metabolic networks
Metabolic pathways
Metabolites
Metabolomics
Mouth Neoplasms
Neural networks
Oral cancer
Periodontal diseases
Periodontitis
Saliva
Science & Technology
Stochasticity
title Finding distinctions between oral cancer and periodontitis using saliva metabolites and machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T16%3A59%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finding%20distinctions%20between%20oral%20cancer%20and%20periodontitis%20using%20saliva%20metabolites%20and%20machine%20learning&rft.jtitle=Oral%20diseases&rft.au=Kouznetsova,%20Valentina%20L.&rft.date=2021-04&rft.volume=27&rft.issue=3&rft.spage=484&rft.epage=493&rft.pages=484-493&rft.issn=1354-523X&rft.eissn=1601-0825&rft_id=info:doi/10.1111/odi.13591&rft_dat=%3Cproquest_wiley%3E2494057723%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2494057723&rft_id=info:pmid/32762095&rfr_iscdi=true