Modeling and Multi-Criteria Optimization of a Process for H2O2 Electrosynthesis
This article introduces a novel laboratory-scale process for the electrochemical synthesis of hydrogen peroxide (H2O2). The process aims at an energy-efficient, decentralized production, and a mathematical optimization of it is presented. A dynamic, zero-dimensional mathematical model of the reactor...
Gespeichert in:
Veröffentlicht in: | Processes 2021-02, Vol.9 (2), p.399 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 399 |
container_title | Processes |
container_volume | 9 |
creator | von Kurnatowski, Martin Bortz, Michael |
description | This article introduces a novel laboratory-scale process for the electrochemical synthesis of hydrogen peroxide (H2O2). The process aims at an energy-efficient, decentralized production, and a mathematical optimization of it is presented. A dynamic, zero-dimensional mathematical model of the reactor is set up in Aspen custom modeler®. The proposed model constitutes a reasonable compromise between complexity and convergence. After thoroughly determining the reaction kinetics by adjustment to experimental data, the reactor unit is embedded in an Aspen Plus® flowsheet in order to investigate its interaction with other unit operations. The downstream contains another custom module for membrane distillation. Electricity appears as a resource in the process, and optimization shows that it reaches product purities of up to 3 wt.-%. Both the process optimization and the adjustment of the reaction kinetics are treated as multi-criteria optimization (MCO) problems. |
doi_str_mv | 10.3390/pr9020399 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2493907086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2493907086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-b92322de585b856d5c9f4a1390376e71a93848590c05357e9763a48e4f334e63</originalsourceid><addsrcrecordid>eNpNUD1PwzAQtRBIVKUD_8ASE0PA8cVxbkRVoZVahaF75CYXcJXGwXaH8utJVYS45d3w9L4Yu0_FEwCK58GjkAIQr9hESqkT1Km-_vffslkIezEeplCofMLKjWuos_0HN33DN8cu2mTubSRvDS-HaA_220Treu5abvi7dzWFwFvn-VKWki86qqN34dTHTwo23LGb1nSBZr84ZdvXxXa-TNbl22r-sk5qiTImO5QgZUOqULsxR6NqbDOTjiVA56RTg1BkhUJRCwVKE-ocTFZQ1gJklMOUPVxkB---jhRitXdH34-OlcxwlNGiOLMeL6x6TBg8tdXg7cH4U5WK6rxY9bcY_ABwMVup</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493907086</pqid></control><display><type>article</type><title>Modeling and Multi-Criteria Optimization of a Process for H2O2 Electrosynthesis</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Free E-Journal (出版社公開部分のみ)</source><creator>von Kurnatowski, Martin ; Bortz, Michael</creator><creatorcontrib>von Kurnatowski, Martin ; Bortz, Michael</creatorcontrib><description>This article introduces a novel laboratory-scale process for the electrochemical synthesis of hydrogen peroxide (H2O2). The process aims at an energy-efficient, decentralized production, and a mathematical optimization of it is presented. A dynamic, zero-dimensional mathematical model of the reactor is set up in Aspen custom modeler®. The proposed model constitutes a reasonable compromise between complexity and convergence. After thoroughly determining the reaction kinetics by adjustment to experimental data, the reactor unit is embedded in an Aspen Plus® flowsheet in order to investigate its interaction with other unit operations. The downstream contains another custom module for membrane distillation. Electricity appears as a resource in the process, and optimization shows that it reaches product purities of up to 3 wt.-%. Both the process optimization and the adjustment of the reaction kinetics are treated as multi-criteria optimization (MCO) problems.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr9020399</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Carbon dioxide ; Chemical industry ; Chemical synthesis ; Distillation ; Electricity distribution ; Electrodes ; Fuel cells ; Hydrogen ; Hydrogen peroxide ; Kinetics ; Mathematical analysis ; Mathematical models ; Multiple criterion ; Optimization ; Oxidation ; Parameter estimation ; Production capacity ; Reaction kinetics ; Simulation</subject><ispartof>Processes, 2021-02, Vol.9 (2), p.399</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-b92322de585b856d5c9f4a1390376e71a93848590c05357e9763a48e4f334e63</citedby><cites>FETCH-LOGICAL-c292t-b92322de585b856d5c9f4a1390376e71a93848590c05357e9763a48e4f334e63</cites><orcidid>0000-0001-8169-2907 ; 0000-0001-6123-8723</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>von Kurnatowski, Martin</creatorcontrib><creatorcontrib>Bortz, Michael</creatorcontrib><title>Modeling and Multi-Criteria Optimization of a Process for H2O2 Electrosynthesis</title><title>Processes</title><description>This article introduces a novel laboratory-scale process for the electrochemical synthesis of hydrogen peroxide (H2O2). The process aims at an energy-efficient, decentralized production, and a mathematical optimization of it is presented. A dynamic, zero-dimensional mathematical model of the reactor is set up in Aspen custom modeler®. The proposed model constitutes a reasonable compromise between complexity and convergence. After thoroughly determining the reaction kinetics by adjustment to experimental data, the reactor unit is embedded in an Aspen Plus® flowsheet in order to investigate its interaction with other unit operations. The downstream contains another custom module for membrane distillation. Electricity appears as a resource in the process, and optimization shows that it reaches product purities of up to 3 wt.-%. Both the process optimization and the adjustment of the reaction kinetics are treated as multi-criteria optimization (MCO) problems.</description><subject>Carbon dioxide</subject><subject>Chemical industry</subject><subject>Chemical synthesis</subject><subject>Distillation</subject><subject>Electricity distribution</subject><subject>Electrodes</subject><subject>Fuel cells</subject><subject>Hydrogen</subject><subject>Hydrogen peroxide</subject><subject>Kinetics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Multiple criterion</subject><subject>Optimization</subject><subject>Oxidation</subject><subject>Parameter estimation</subject><subject>Production capacity</subject><subject>Reaction kinetics</subject><subject>Simulation</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNUD1PwzAQtRBIVKUD_8ASE0PA8cVxbkRVoZVahaF75CYXcJXGwXaH8utJVYS45d3w9L4Yu0_FEwCK58GjkAIQr9hESqkT1Km-_vffslkIezEeplCofMLKjWuos_0HN33DN8cu2mTubSRvDS-HaA_220Treu5abvi7dzWFwFvn-VKWki86qqN34dTHTwo23LGb1nSBZr84ZdvXxXa-TNbl22r-sk5qiTImO5QgZUOqULsxR6NqbDOTjiVA56RTg1BkhUJRCwVKE-ocTFZQ1gJklMOUPVxkB---jhRitXdH34-OlcxwlNGiOLMeL6x6TBg8tdXg7cH4U5WK6rxY9bcY_ABwMVup</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>von Kurnatowski, Martin</creator><creator>Bortz, Michael</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-8169-2907</orcidid><orcidid>https://orcid.org/0000-0001-6123-8723</orcidid></search><sort><creationdate>20210201</creationdate><title>Modeling and Multi-Criteria Optimization of a Process for H2O2 Electrosynthesis</title><author>von Kurnatowski, Martin ; Bortz, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-b92322de585b856d5c9f4a1390376e71a93848590c05357e9763a48e4f334e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon dioxide</topic><topic>Chemical industry</topic><topic>Chemical synthesis</topic><topic>Distillation</topic><topic>Electricity distribution</topic><topic>Electrodes</topic><topic>Fuel cells</topic><topic>Hydrogen</topic><topic>Hydrogen peroxide</topic><topic>Kinetics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Multiple criterion</topic><topic>Optimization</topic><topic>Oxidation</topic><topic>Parameter estimation</topic><topic>Production capacity</topic><topic>Reaction kinetics</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>von Kurnatowski, Martin</creatorcontrib><creatorcontrib>Bortz, Michael</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Biological Science Journals</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>von Kurnatowski, Martin</au><au>Bortz, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and Multi-Criteria Optimization of a Process for H2O2 Electrosynthesis</atitle><jtitle>Processes</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>9</volume><issue>2</issue><spage>399</spage><pages>399-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>This article introduces a novel laboratory-scale process for the electrochemical synthesis of hydrogen peroxide (H2O2). The process aims at an energy-efficient, decentralized production, and a mathematical optimization of it is presented. A dynamic, zero-dimensional mathematical model of the reactor is set up in Aspen custom modeler®. The proposed model constitutes a reasonable compromise between complexity and convergence. After thoroughly determining the reaction kinetics by adjustment to experimental data, the reactor unit is embedded in an Aspen Plus® flowsheet in order to investigate its interaction with other unit operations. The downstream contains another custom module for membrane distillation. Electricity appears as a resource in the process, and optimization shows that it reaches product purities of up to 3 wt.-%. Both the process optimization and the adjustment of the reaction kinetics are treated as multi-criteria optimization (MCO) problems.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr9020399</doi><orcidid>https://orcid.org/0000-0001-8169-2907</orcidid><orcidid>https://orcid.org/0000-0001-6123-8723</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-9717 |
ispartof | Processes, 2021-02, Vol.9 (2), p.399 |
issn | 2227-9717 2227-9717 |
language | eng |
recordid | cdi_proquest_journals_2493907086 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Free E-Journal (出版社公開部分のみ) |
subjects | Carbon dioxide Chemical industry Chemical synthesis Distillation Electricity distribution Electrodes Fuel cells Hydrogen Hydrogen peroxide Kinetics Mathematical analysis Mathematical models Multiple criterion Optimization Oxidation Parameter estimation Production capacity Reaction kinetics Simulation |
title | Modeling and Multi-Criteria Optimization of a Process for H2O2 Electrosynthesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A51%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20Multi-Criteria%20Optimization%20of%20a%20Process%20for%20H2O2%20Electrosynthesis&rft.jtitle=Processes&rft.au=von%20Kurnatowski,%20Martin&rft.date=2021-02-01&rft.volume=9&rft.issue=2&rft.spage=399&rft.pages=399-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr9020399&rft_dat=%3Cproquest_cross%3E2493907086%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2493907086&rft_id=info:pmid/&rfr_iscdi=true |