Energy level location of divalent and trivalent lanthanides in calcium aluminosilicate materials
Ca 2 Al 2 SiO 7 (CAS) doped with Eu 3+ , Ce 3+ , and Tb 3+ ions (1 mol%) were synthesized by solid-state reaction at 1280 °C and spectroscopic studies of the prepared samples were performed by photoluminescence and photoluminescence excitation spectra at room temperature. Energies of the lowest f-d...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2021-02, Vol.32 (4), p.4239-4247 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4247 |
---|---|
container_issue | 4 |
container_start_page | 4239 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 32 |
creator | Trac, Nguyen Ngoc Van Tuyen, Ho Van Khoa Bao, Le Vi, Nguyen Ha Thuan, A. N. H. |
description | Ca
2
Al
2
SiO
7
(CAS) doped with Eu
3+
, Ce
3+
, and Tb
3+
ions (1 mol%) were synthesized by solid-state reaction at 1280 °C and spectroscopic studies of the prepared samples were performed by photoluminescence and photoluminescence excitation spectra at room temperature. Energies of the lowest f-d transition of Ce
3+
ions and charge transfer process of Eu
3+
ions obtained from photoluminescence excitation spectra were used to predict the energy levels of all divalent and trivalent lanthanides relative to the valence and conduction bands of CAS host lattice and to construct the host referred binding energy and vacuum referred binding energy schemes. The predicted energies for Tb
3+
ions are in good agreement with experimental energies indicating the obtained energy level scheme provides a better understanding of the luminescent processes in Ca
2
Al
2
SiO
7
material. |
doi_str_mv | 10.1007/s10854-020-05168-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2493884587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2493884587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-dc75218369275d5d644b50c51772c63d9ffd3ccd8ba5949e03d280cea90d66293</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gKuA6-ppLk26lGG8wIAbBXcxk6RjhjQdk3Zg3t5qFXduzs-B_wIfQpclXJcA4iaXIDkrgEABvKxkIY_QrOSCFkyS12M0g5qLgnFCTtFZzlsAqBiVM_S2jC5tDji4vQs4dEb3vou4a7D1ex1c7LGOFvfp9ws69u86eusy9hEbHYwfWqzD0PrYZR_8WOFwO57kdcjn6KQZxV386By93C2fFw_F6un-cXG7KgwR0BfWCE5KSauaCG65rRhbczC8FIKYitq6aSw1xsq15jWrHVBLJBina7BVRWo6R1dT7y51H4PLvdp2Q4rjpCKsplIyLsXoIpPLpC7n5Bq1S77V6aBKUF8k1URSjSTVN0klxxCdQnk0x41Lf9X_pD4Bnp53qg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493884587</pqid></control><display><type>article</type><title>Energy level location of divalent and trivalent lanthanides in calcium aluminosilicate materials</title><source>SpringerLink Journals - AutoHoldings</source><creator>Trac, Nguyen Ngoc ; Van Tuyen, Ho ; Van Khoa Bao, Le ; Vi, Nguyen Ha ; Thuan, A. N. H.</creator><creatorcontrib>Trac, Nguyen Ngoc ; Van Tuyen, Ho ; Van Khoa Bao, Le ; Vi, Nguyen Ha ; Thuan, A. N. H.</creatorcontrib><description>Ca
2
Al
2
SiO
7
(CAS) doped with Eu
3+
, Ce
3+
, and Tb
3+
ions (1 mol%) were synthesized by solid-state reaction at 1280 °C and spectroscopic studies of the prepared samples were performed by photoluminescence and photoluminescence excitation spectra at room temperature. Energies of the lowest f-d transition of Ce
3+
ions and charge transfer process of Eu
3+
ions obtained from photoluminescence excitation spectra were used to predict the energy levels of all divalent and trivalent lanthanides relative to the valence and conduction bands of CAS host lattice and to construct the host referred binding energy and vacuum referred binding energy schemes. The predicted energies for Tb
3+
ions are in good agreement with experimental energies indicating the obtained energy level scheme provides a better understanding of the luminescent processes in Ca
2
Al
2
SiO
7
material.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-020-05168-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aluminosilicates ; Aluminum silicates ; Binding energy ; Cerium ; Characterization and Evaluation of Materials ; Charge transfer ; Chemical synthesis ; Chemistry and Materials Science ; Conduction bands ; Energy ; Energy levels ; Europium ; Excitation spectra ; Lanthanides ; Materials Science ; Optical and Electronic Materials ; Photoluminescence ; R&D ; Radiation ; Research & development ; Room temperature ; Terbium</subject><ispartof>Journal of materials science. Materials in electronics, 2021-02, Vol.32 (4), p.4239-4247</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-dc75218369275d5d644b50c51772c63d9ffd3ccd8ba5949e03d280cea90d66293</cites><orcidid>0000-0003-3628-5768</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-020-05168-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-020-05168-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Trac, Nguyen Ngoc</creatorcontrib><creatorcontrib>Van Tuyen, Ho</creatorcontrib><creatorcontrib>Van Khoa Bao, Le</creatorcontrib><creatorcontrib>Vi, Nguyen Ha</creatorcontrib><creatorcontrib>Thuan, A. N. H.</creatorcontrib><title>Energy level location of divalent and trivalent lanthanides in calcium aluminosilicate materials</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Ca
2
Al
2
SiO
7
(CAS) doped with Eu
3+
, Ce
3+
, and Tb
3+
ions (1 mol%) were synthesized by solid-state reaction at 1280 °C and spectroscopic studies of the prepared samples were performed by photoluminescence and photoluminescence excitation spectra at room temperature. Energies of the lowest f-d transition of Ce
3+
ions and charge transfer process of Eu
3+
ions obtained from photoluminescence excitation spectra were used to predict the energy levels of all divalent and trivalent lanthanides relative to the valence and conduction bands of CAS host lattice and to construct the host referred binding energy and vacuum referred binding energy schemes. The predicted energies for Tb
3+
ions are in good agreement with experimental energies indicating the obtained energy level scheme provides a better understanding of the luminescent processes in Ca
2
Al
2
SiO
7
material.</description><subject>Aluminosilicates</subject><subject>Aluminum silicates</subject><subject>Binding energy</subject><subject>Cerium</subject><subject>Characterization and Evaluation of Materials</subject><subject>Charge transfer</subject><subject>Chemical synthesis</subject><subject>Chemistry and Materials Science</subject><subject>Conduction bands</subject><subject>Energy</subject><subject>Energy levels</subject><subject>Europium</subject><subject>Excitation spectra</subject><subject>Lanthanides</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Photoluminescence</subject><subject>R&D</subject><subject>Radiation</subject><subject>Research & development</subject><subject>Room temperature</subject><subject>Terbium</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMtKxDAUhoMoOI6-gKuA6-ppLk26lGG8wIAbBXcxk6RjhjQdk3Zg3t5qFXduzs-B_wIfQpclXJcA4iaXIDkrgEABvKxkIY_QrOSCFkyS12M0g5qLgnFCTtFZzlsAqBiVM_S2jC5tDji4vQs4dEb3vou4a7D1ex1c7LGOFvfp9ws69u86eusy9hEbHYwfWqzD0PrYZR_8WOFwO57kdcjn6KQZxV386By93C2fFw_F6un-cXG7KgwR0BfWCE5KSauaCG65rRhbczC8FIKYitq6aSw1xsq15jWrHVBLJBina7BVRWo6R1dT7y51H4PLvdp2Q4rjpCKsplIyLsXoIpPLpC7n5Bq1S77V6aBKUF8k1URSjSTVN0klxxCdQnk0x41Lf9X_pD4Bnp53qg</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Trac, Nguyen Ngoc</creator><creator>Van Tuyen, Ho</creator><creator>Van Khoa Bao, Le</creator><creator>Vi, Nguyen Ha</creator><creator>Thuan, A. N. H.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-3628-5768</orcidid></search><sort><creationdate>20210201</creationdate><title>Energy level location of divalent and trivalent lanthanides in calcium aluminosilicate materials</title><author>Trac, Nguyen Ngoc ; Van Tuyen, Ho ; Van Khoa Bao, Le ; Vi, Nguyen Ha ; Thuan, A. N. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-dc75218369275d5d644b50c51772c63d9ffd3ccd8ba5949e03d280cea90d66293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminosilicates</topic><topic>Aluminum silicates</topic><topic>Binding energy</topic><topic>Cerium</topic><topic>Characterization and Evaluation of Materials</topic><topic>Charge transfer</topic><topic>Chemical synthesis</topic><topic>Chemistry and Materials Science</topic><topic>Conduction bands</topic><topic>Energy</topic><topic>Energy levels</topic><topic>Europium</topic><topic>Excitation spectra</topic><topic>Lanthanides</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Photoluminescence</topic><topic>R&D</topic><topic>Radiation</topic><topic>Research & development</topic><topic>Room temperature</topic><topic>Terbium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trac, Nguyen Ngoc</creatorcontrib><creatorcontrib>Van Tuyen, Ho</creatorcontrib><creatorcontrib>Van Khoa Bao, Le</creatorcontrib><creatorcontrib>Vi, Nguyen Ha</creatorcontrib><creatorcontrib>Thuan, A. N. H.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trac, Nguyen Ngoc</au><au>Van Tuyen, Ho</au><au>Van Khoa Bao, Le</au><au>Vi, Nguyen Ha</au><au>Thuan, A. N. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy level location of divalent and trivalent lanthanides in calcium aluminosilicate materials</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>32</volume><issue>4</issue><spage>4239</spage><epage>4247</epage><pages>4239-4247</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Ca
2
Al
2
SiO
7
(CAS) doped with Eu
3+
, Ce
3+
, and Tb
3+
ions (1 mol%) were synthesized by solid-state reaction at 1280 °C and spectroscopic studies of the prepared samples were performed by photoluminescence and photoluminescence excitation spectra at room temperature. Energies of the lowest f-d transition of Ce
3+
ions and charge transfer process of Eu
3+
ions obtained from photoluminescence excitation spectra were used to predict the energy levels of all divalent and trivalent lanthanides relative to the valence and conduction bands of CAS host lattice and to construct the host referred binding energy and vacuum referred binding energy schemes. The predicted energies for Tb
3+
ions are in good agreement with experimental energies indicating the obtained energy level scheme provides a better understanding of the luminescent processes in Ca
2
Al
2
SiO
7
material.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-020-05168-8</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3628-5768</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2021-02, Vol.32 (4), p.4239-4247 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2493884587 |
source | SpringerLink Journals - AutoHoldings |
subjects | Aluminosilicates Aluminum silicates Binding energy Cerium Characterization and Evaluation of Materials Charge transfer Chemical synthesis Chemistry and Materials Science Conduction bands Energy Energy levels Europium Excitation spectra Lanthanides Materials Science Optical and Electronic Materials Photoluminescence R&D Radiation Research & development Room temperature Terbium |
title | Energy level location of divalent and trivalent lanthanides in calcium aluminosilicate materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T04%3A17%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20level%20location%20of%20divalent%20and%20trivalent%20lanthanides%20in%20calcium%20aluminosilicate%20materials&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Trac,%20Nguyen%20Ngoc&rft.date=2021-02-01&rft.volume=32&rft.issue=4&rft.spage=4239&rft.epage=4247&rft.pages=4239-4247&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-020-05168-8&rft_dat=%3Cproquest_cross%3E2493884587%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2493884587&rft_id=info:pmid/&rfr_iscdi=true |