Electrical transport mechanism of aluminum substituted barium hexaferrite magnetic semiconductor

The polycrystalline M-type barium hexaferrite (BaFe 12− x Al x O 19 ) with x  = 0.0, 1.0, 2.0, and 3.0 have been prepared by the sol–gel Method. The crystal structure of all the samples is found to be in hexagonal symmetry with P6 3 /mmc space group. The impedance was studied over a range of frequen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2021-02, Vol.32 (4), p.4110-4124
Hauptverfasser: Singh, Alka, Ranjan, Kumar Mukesh, Kumar, Sunil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4124
container_issue 4
container_start_page 4110
container_title Journal of materials science. Materials in electronics
container_volume 32
creator Singh, Alka
Ranjan, Kumar Mukesh
Kumar, Sunil
description The polycrystalline M-type barium hexaferrite (BaFe 12− x Al x O 19 ) with x  = 0.0, 1.0, 2.0, and 3.0 have been prepared by the sol–gel Method. The crystal structure of all the samples is found to be in hexagonal symmetry with P6 3 /mmc space group. The impedance was studied over a range of frequencies (1 Hz–1 MHz) for all the compositions. Direct current (DC) electrical resistivity measurements of all the samples were carried out in the temperature range of 303–775 K. All the samples exhibit the semiconducting behavior. The resistivity increases with the increase in Al 3+ substitution. The impedance along with DC resistivity results established the electron hopping conduction mechanism in the Al 3+ substituted barium hexaferrites. The electrical conductivity has been well explained by the Mott variable-range hopping mechanism of localized polarons. The dielectric dipoles are frozen at low temperature and activated at high temperature as observed two transition temperatures in temperature versus impedance plot. A correlation between ac impedance and DC resistivity has been established in the M-type hexaferrite magnetic semiconductor.
doi_str_mv 10.1007/s10854-020-05152-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2493883958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2493883958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1bfd77a378abbf405035def5d2a2bfe142c702b240e4f0fb1c913fe565421b543</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wNWA6-jNqzOzlFIfUHCj4C4mmZs2ZR41yYD-e0cruHN14XC-c-Ej5JLBNQMobxKDSkkKHCgopjjlR2TGVCmorPjrMZlBrUoqFeen5CylHQAspKhm5G3VossxONMWOZo-7YeYiw7d1vQhdcXgC9OOXejHrkijTTnkMWNTWBPDFG3xw3iMMWQsOrPpMQdXJOyCG_pmdHmI5-TEmzbhxe-dk5e71fPyga6f7h-Xt2vqBKszZdY3ZWlEWRlrvQQFQjXoVcMNtx6Z5K4EbrkElB68Za5mwqNaKMmZVVLMydVhdx-H9xFT1rthjP30UnNZi6oStaqmFj-0XBxSiuj1PobOxE_NQH-b1AeTejKpf0xqPkHiAKWp3G8w_k3_Q30BE7548Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493883958</pqid></control><display><type>article</type><title>Electrical transport mechanism of aluminum substituted barium hexaferrite magnetic semiconductor</title><source>SpringerLink Journals - AutoHoldings</source><creator>Singh, Alka ; Ranjan, Kumar Mukesh ; Kumar, Sunil</creator><creatorcontrib>Singh, Alka ; Ranjan, Kumar Mukesh ; Kumar, Sunil</creatorcontrib><description>The polycrystalline M-type barium hexaferrite (BaFe 12− x Al x O 19 ) with x  = 0.0, 1.0, 2.0, and 3.0 have been prepared by the sol–gel Method. The crystal structure of all the samples is found to be in hexagonal symmetry with P6 3 /mmc space group. The impedance was studied over a range of frequencies (1 Hz–1 MHz) for all the compositions. Direct current (DC) electrical resistivity measurements of all the samples were carried out in the temperature range of 303–775 K. All the samples exhibit the semiconducting behavior. The resistivity increases with the increase in Al 3+ substitution. The impedance along with DC resistivity results established the electron hopping conduction mechanism in the Al 3+ substituted barium hexaferrites. The electrical conductivity has been well explained by the Mott variable-range hopping mechanism of localized polarons. The dielectric dipoles are frozen at low temperature and activated at high temperature as observed two transition temperatures in temperature versus impedance plot. A correlation between ac impedance and DC resistivity has been established in the M-type hexaferrite magnetic semiconductor.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-020-05152-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alternating current ; Aluminum ; Barium ; Barium hexaferrite ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Crystal structure ; Dipoles ; Direct current ; Electrical resistivity ; High temperature ; Hopping conduction ; Impedance ; Low temperature ; Magnetic semiconductors ; Materials Science ; Optical and Electronic Materials ; Sol-gel processes ; Substitutes ; Temperature</subject><ispartof>Journal of materials science. Materials in electronics, 2021-02, Vol.32 (4), p.4110-4124</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-1bfd77a378abbf405035def5d2a2bfe142c702b240e4f0fb1c913fe565421b543</citedby><cites>FETCH-LOGICAL-c319t-1bfd77a378abbf405035def5d2a2bfe142c702b240e4f0fb1c913fe565421b543</cites><orcidid>0000-0002-1360-9785</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-020-05152-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-020-05152-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Singh, Alka</creatorcontrib><creatorcontrib>Ranjan, Kumar Mukesh</creatorcontrib><creatorcontrib>Kumar, Sunil</creatorcontrib><title>Electrical transport mechanism of aluminum substituted barium hexaferrite magnetic semiconductor</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>The polycrystalline M-type barium hexaferrite (BaFe 12− x Al x O 19 ) with x  = 0.0, 1.0, 2.0, and 3.0 have been prepared by the sol–gel Method. The crystal structure of all the samples is found to be in hexagonal symmetry with P6 3 /mmc space group. The impedance was studied over a range of frequencies (1 Hz–1 MHz) for all the compositions. Direct current (DC) electrical resistivity measurements of all the samples were carried out in the temperature range of 303–775 K. All the samples exhibit the semiconducting behavior. The resistivity increases with the increase in Al 3+ substitution. The impedance along with DC resistivity results established the electron hopping conduction mechanism in the Al 3+ substituted barium hexaferrites. The electrical conductivity has been well explained by the Mott variable-range hopping mechanism of localized polarons. The dielectric dipoles are frozen at low temperature and activated at high temperature as observed two transition temperatures in temperature versus impedance plot. A correlation between ac impedance and DC resistivity has been established in the M-type hexaferrite magnetic semiconductor.</description><subject>Alternating current</subject><subject>Aluminum</subject><subject>Barium</subject><subject>Barium hexaferrite</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Crystal structure</subject><subject>Dipoles</subject><subject>Direct current</subject><subject>Electrical resistivity</subject><subject>High temperature</subject><subject>Hopping conduction</subject><subject>Impedance</subject><subject>Low temperature</subject><subject>Magnetic semiconductors</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Sol-gel processes</subject><subject>Substitutes</subject><subject>Temperature</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wNWA6-jNqzOzlFIfUHCj4C4mmZs2ZR41yYD-e0cruHN14XC-c-Ej5JLBNQMobxKDSkkKHCgopjjlR2TGVCmorPjrMZlBrUoqFeen5CylHQAspKhm5G3VossxONMWOZo-7YeYiw7d1vQhdcXgC9OOXejHrkijTTnkMWNTWBPDFG3xw3iMMWQsOrPpMQdXJOyCG_pmdHmI5-TEmzbhxe-dk5e71fPyga6f7h-Xt2vqBKszZdY3ZWlEWRlrvQQFQjXoVcMNtx6Z5K4EbrkElB68Za5mwqNaKMmZVVLMydVhdx-H9xFT1rthjP30UnNZi6oStaqmFj-0XBxSiuj1PobOxE_NQH-b1AeTejKpf0xqPkHiAKWp3G8w_k3_Q30BE7548Q</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Singh, Alka</creator><creator>Ranjan, Kumar Mukesh</creator><creator>Kumar, Sunil</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-1360-9785</orcidid></search><sort><creationdate>20210201</creationdate><title>Electrical transport mechanism of aluminum substituted barium hexaferrite magnetic semiconductor</title><author>Singh, Alka ; Ranjan, Kumar Mukesh ; Kumar, Sunil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1bfd77a378abbf405035def5d2a2bfe142c702b240e4f0fb1c913fe565421b543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alternating current</topic><topic>Aluminum</topic><topic>Barium</topic><topic>Barium hexaferrite</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Crystal structure</topic><topic>Dipoles</topic><topic>Direct current</topic><topic>Electrical resistivity</topic><topic>High temperature</topic><topic>Hopping conduction</topic><topic>Impedance</topic><topic>Low temperature</topic><topic>Magnetic semiconductors</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Sol-gel processes</topic><topic>Substitutes</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Alka</creatorcontrib><creatorcontrib>Ranjan, Kumar Mukesh</creatorcontrib><creatorcontrib>Kumar, Sunil</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Alka</au><au>Ranjan, Kumar Mukesh</au><au>Kumar, Sunil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrical transport mechanism of aluminum substituted barium hexaferrite magnetic semiconductor</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>32</volume><issue>4</issue><spage>4110</spage><epage>4124</epage><pages>4110-4124</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>The polycrystalline M-type barium hexaferrite (BaFe 12− x Al x O 19 ) with x  = 0.0, 1.0, 2.0, and 3.0 have been prepared by the sol–gel Method. The crystal structure of all the samples is found to be in hexagonal symmetry with P6 3 /mmc space group. The impedance was studied over a range of frequencies (1 Hz–1 MHz) for all the compositions. Direct current (DC) electrical resistivity measurements of all the samples were carried out in the temperature range of 303–775 K. All the samples exhibit the semiconducting behavior. The resistivity increases with the increase in Al 3+ substitution. The impedance along with DC resistivity results established the electron hopping conduction mechanism in the Al 3+ substituted barium hexaferrites. The electrical conductivity has been well explained by the Mott variable-range hopping mechanism of localized polarons. The dielectric dipoles are frozen at low temperature and activated at high temperature as observed two transition temperatures in temperature versus impedance plot. A correlation between ac impedance and DC resistivity has been established in the M-type hexaferrite magnetic semiconductor.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-020-05152-2</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1360-9785</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2021-02, Vol.32 (4), p.4110-4124
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2493883958
source SpringerLink Journals - AutoHoldings
subjects Alternating current
Aluminum
Barium
Barium hexaferrite
Characterization and Evaluation of Materials
Chemistry and Materials Science
Crystal structure
Dipoles
Direct current
Electrical resistivity
High temperature
Hopping conduction
Impedance
Low temperature
Magnetic semiconductors
Materials Science
Optical and Electronic Materials
Sol-gel processes
Substitutes
Temperature
title Electrical transport mechanism of aluminum substituted barium hexaferrite magnetic semiconductor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T08%3A36%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrical%20transport%20mechanism%20of%20aluminum%20substituted%20barium%20hexaferrite%20magnetic%20semiconductor&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Singh,%20Alka&rft.date=2021-02-01&rft.volume=32&rft.issue=4&rft.spage=4110&rft.epage=4124&rft.pages=4110-4124&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-020-05152-2&rft_dat=%3Cproquest_cross%3E2493883958%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2493883958&rft_id=info:pmid/&rfr_iscdi=true