Electrical transport mechanism of aluminum substituted barium hexaferrite magnetic semiconductor
The polycrystalline M-type barium hexaferrite (BaFe 12− x Al x O 19 ) with x = 0.0, 1.0, 2.0, and 3.0 have been prepared by the sol–gel Method. The crystal structure of all the samples is found to be in hexagonal symmetry with P6 3 /mmc space group. The impedance was studied over a range of frequen...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2021-02, Vol.32 (4), p.4110-4124 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4124 |
---|---|
container_issue | 4 |
container_start_page | 4110 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 32 |
creator | Singh, Alka Ranjan, Kumar Mukesh Kumar, Sunil |
description | The polycrystalline M-type barium hexaferrite (BaFe
12−
x
Al
x
O
19
) with
x
= 0.0, 1.0, 2.0, and 3.0 have been prepared by the sol–gel Method. The crystal structure of all the samples is found to be in hexagonal symmetry with
P6
3
/mmc
space group. The impedance was studied over a range of frequencies (1 Hz–1 MHz) for all the compositions. Direct current (DC) electrical resistivity measurements of all the samples were carried out in the temperature range of 303–775 K. All the samples exhibit the semiconducting behavior. The resistivity increases with the increase in Al
3+
substitution. The impedance along with DC resistivity results established the electron hopping conduction mechanism in the Al
3+
substituted barium hexaferrites. The electrical conductivity has been well explained by the Mott variable-range hopping mechanism of localized polarons. The dielectric dipoles are frozen at low temperature and activated at high temperature as observed two transition temperatures in temperature versus impedance plot. A correlation between ac impedance and DC resistivity has been established in the M-type hexaferrite magnetic semiconductor. |
doi_str_mv | 10.1007/s10854-020-05152-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2493883958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2493883958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1bfd77a378abbf405035def5d2a2bfe142c702b240e4f0fb1c913fe565421b543</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wNWA6-jNqzOzlFIfUHCj4C4mmZs2ZR41yYD-e0cruHN14XC-c-Ej5JLBNQMobxKDSkkKHCgopjjlR2TGVCmorPjrMZlBrUoqFeen5CylHQAspKhm5G3VossxONMWOZo-7YeYiw7d1vQhdcXgC9OOXejHrkijTTnkMWNTWBPDFG3xw3iMMWQsOrPpMQdXJOyCG_pmdHmI5-TEmzbhxe-dk5e71fPyga6f7h-Xt2vqBKszZdY3ZWlEWRlrvQQFQjXoVcMNtx6Z5K4EbrkElB68Za5mwqNaKMmZVVLMydVhdx-H9xFT1rthjP30UnNZi6oStaqmFj-0XBxSiuj1PobOxE_NQH-b1AeTejKpf0xqPkHiAKWp3G8w_k3_Q30BE7548Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493883958</pqid></control><display><type>article</type><title>Electrical transport mechanism of aluminum substituted barium hexaferrite magnetic semiconductor</title><source>SpringerLink Journals - AutoHoldings</source><creator>Singh, Alka ; Ranjan, Kumar Mukesh ; Kumar, Sunil</creator><creatorcontrib>Singh, Alka ; Ranjan, Kumar Mukesh ; Kumar, Sunil</creatorcontrib><description>The polycrystalline M-type barium hexaferrite (BaFe
12−
x
Al
x
O
19
) with
x
= 0.0, 1.0, 2.0, and 3.0 have been prepared by the sol–gel Method. The crystal structure of all the samples is found to be in hexagonal symmetry with
P6
3
/mmc
space group. The impedance was studied over a range of frequencies (1 Hz–1 MHz) for all the compositions. Direct current (DC) electrical resistivity measurements of all the samples were carried out in the temperature range of 303–775 K. All the samples exhibit the semiconducting behavior. The resistivity increases with the increase in Al
3+
substitution. The impedance along with DC resistivity results established the electron hopping conduction mechanism in the Al
3+
substituted barium hexaferrites. The electrical conductivity has been well explained by the Mott variable-range hopping mechanism of localized polarons. The dielectric dipoles are frozen at low temperature and activated at high temperature as observed two transition temperatures in temperature versus impedance plot. A correlation between ac impedance and DC resistivity has been established in the M-type hexaferrite magnetic semiconductor.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-020-05152-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alternating current ; Aluminum ; Barium ; Barium hexaferrite ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Crystal structure ; Dipoles ; Direct current ; Electrical resistivity ; High temperature ; Hopping conduction ; Impedance ; Low temperature ; Magnetic semiconductors ; Materials Science ; Optical and Electronic Materials ; Sol-gel processes ; Substitutes ; Temperature</subject><ispartof>Journal of materials science. Materials in electronics, 2021-02, Vol.32 (4), p.4110-4124</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-1bfd77a378abbf405035def5d2a2bfe142c702b240e4f0fb1c913fe565421b543</citedby><cites>FETCH-LOGICAL-c319t-1bfd77a378abbf405035def5d2a2bfe142c702b240e4f0fb1c913fe565421b543</cites><orcidid>0000-0002-1360-9785</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-020-05152-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-020-05152-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Singh, Alka</creatorcontrib><creatorcontrib>Ranjan, Kumar Mukesh</creatorcontrib><creatorcontrib>Kumar, Sunil</creatorcontrib><title>Electrical transport mechanism of aluminum substituted barium hexaferrite magnetic semiconductor</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>The polycrystalline M-type barium hexaferrite (BaFe
12−
x
Al
x
O
19
) with
x
= 0.0, 1.0, 2.0, and 3.0 have been prepared by the sol–gel Method. The crystal structure of all the samples is found to be in hexagonal symmetry with
P6
3
/mmc
space group. The impedance was studied over a range of frequencies (1 Hz–1 MHz) for all the compositions. Direct current (DC) electrical resistivity measurements of all the samples were carried out in the temperature range of 303–775 K. All the samples exhibit the semiconducting behavior. The resistivity increases with the increase in Al
3+
substitution. The impedance along with DC resistivity results established the electron hopping conduction mechanism in the Al
3+
substituted barium hexaferrites. The electrical conductivity has been well explained by the Mott variable-range hopping mechanism of localized polarons. The dielectric dipoles are frozen at low temperature and activated at high temperature as observed two transition temperatures in temperature versus impedance plot. A correlation between ac impedance and DC resistivity has been established in the M-type hexaferrite magnetic semiconductor.</description><subject>Alternating current</subject><subject>Aluminum</subject><subject>Barium</subject><subject>Barium hexaferrite</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Crystal structure</subject><subject>Dipoles</subject><subject>Direct current</subject><subject>Electrical resistivity</subject><subject>High temperature</subject><subject>Hopping conduction</subject><subject>Impedance</subject><subject>Low temperature</subject><subject>Magnetic semiconductors</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Sol-gel processes</subject><subject>Substitutes</subject><subject>Temperature</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wNWA6-jNqzOzlFIfUHCj4C4mmZs2ZR41yYD-e0cruHN14XC-c-Ej5JLBNQMobxKDSkkKHCgopjjlR2TGVCmorPjrMZlBrUoqFeen5CylHQAspKhm5G3VossxONMWOZo-7YeYiw7d1vQhdcXgC9OOXejHrkijTTnkMWNTWBPDFG3xw3iMMWQsOrPpMQdXJOyCG_pmdHmI5-TEmzbhxe-dk5e71fPyga6f7h-Xt2vqBKszZdY3ZWlEWRlrvQQFQjXoVcMNtx6Z5K4EbrkElB68Za5mwqNaKMmZVVLMydVhdx-H9xFT1rthjP30UnNZi6oStaqmFj-0XBxSiuj1PobOxE_NQH-b1AeTejKpf0xqPkHiAKWp3G8w_k3_Q30BE7548Q</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Singh, Alka</creator><creator>Ranjan, Kumar Mukesh</creator><creator>Kumar, Sunil</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-1360-9785</orcidid></search><sort><creationdate>20210201</creationdate><title>Electrical transport mechanism of aluminum substituted barium hexaferrite magnetic semiconductor</title><author>Singh, Alka ; Ranjan, Kumar Mukesh ; Kumar, Sunil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1bfd77a378abbf405035def5d2a2bfe142c702b240e4f0fb1c913fe565421b543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alternating current</topic><topic>Aluminum</topic><topic>Barium</topic><topic>Barium hexaferrite</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Crystal structure</topic><topic>Dipoles</topic><topic>Direct current</topic><topic>Electrical resistivity</topic><topic>High temperature</topic><topic>Hopping conduction</topic><topic>Impedance</topic><topic>Low temperature</topic><topic>Magnetic semiconductors</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Sol-gel processes</topic><topic>Substitutes</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Alka</creatorcontrib><creatorcontrib>Ranjan, Kumar Mukesh</creatorcontrib><creatorcontrib>Kumar, Sunil</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Alka</au><au>Ranjan, Kumar Mukesh</au><au>Kumar, Sunil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrical transport mechanism of aluminum substituted barium hexaferrite magnetic semiconductor</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>32</volume><issue>4</issue><spage>4110</spage><epage>4124</epage><pages>4110-4124</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>The polycrystalline M-type barium hexaferrite (BaFe
12−
x
Al
x
O
19
) with
x
= 0.0, 1.0, 2.0, and 3.0 have been prepared by the sol–gel Method. The crystal structure of all the samples is found to be in hexagonal symmetry with
P6
3
/mmc
space group. The impedance was studied over a range of frequencies (1 Hz–1 MHz) for all the compositions. Direct current (DC) electrical resistivity measurements of all the samples were carried out in the temperature range of 303–775 K. All the samples exhibit the semiconducting behavior. The resistivity increases with the increase in Al
3+
substitution. The impedance along with DC resistivity results established the electron hopping conduction mechanism in the Al
3+
substituted barium hexaferrites. The electrical conductivity has been well explained by the Mott variable-range hopping mechanism of localized polarons. The dielectric dipoles are frozen at low temperature and activated at high temperature as observed two transition temperatures in temperature versus impedance plot. A correlation between ac impedance and DC resistivity has been established in the M-type hexaferrite magnetic semiconductor.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-020-05152-2</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1360-9785</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2021-02, Vol.32 (4), p.4110-4124 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2493883958 |
source | SpringerLink Journals - AutoHoldings |
subjects | Alternating current Aluminum Barium Barium hexaferrite Characterization and Evaluation of Materials Chemistry and Materials Science Crystal structure Dipoles Direct current Electrical resistivity High temperature Hopping conduction Impedance Low temperature Magnetic semiconductors Materials Science Optical and Electronic Materials Sol-gel processes Substitutes Temperature |
title | Electrical transport mechanism of aluminum substituted barium hexaferrite magnetic semiconductor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T08%3A36%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrical%20transport%20mechanism%20of%20aluminum%20substituted%20barium%20hexaferrite%20magnetic%20semiconductor&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Singh,%20Alka&rft.date=2021-02-01&rft.volume=32&rft.issue=4&rft.spage=4110&rft.epage=4124&rft.pages=4110-4124&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-020-05152-2&rft_dat=%3Cproquest_cross%3E2493883958%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2493883958&rft_id=info:pmid/&rfr_iscdi=true |