Deep learning improves acoustic biodiversity monitoring and new candidate forest frog species identification (genus Platymantis) in the Philippines

One significant challenge to biodiversity assessment and conservation is persistent gaps in species diversity knowledge in Earth’s most biodiverse areas. Monitoring devices that utilize species-specific advertisement calls show promise in overcoming challenges associated with lagging frog species di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biodiversity and conservation 2021-03, Vol.30 (3), p.643-657
Hauptverfasser: Khalighifar, Ali, Brown, Rafe M., Goyes Vallejos, Johana, Peterson, A. Townsend
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 657
container_issue 3
container_start_page 643
container_title Biodiversity and conservation
container_volume 30
creator Khalighifar, Ali
Brown, Rafe M.
Goyes Vallejos, Johana
Peterson, A. Townsend
description One significant challenge to biodiversity assessment and conservation is persistent gaps in species diversity knowledge in Earth’s most biodiverse areas. Monitoring devices that utilize species-specific advertisement calls show promise in overcoming challenges associated with lagging frog species discovery rates. However, these devices generate data at paces faster than it can be analyzed. As such, automated platforms capable of efficient data processing and accurate species-level identification are at a premium. In addressing this gap, we used TensorFlow Inception v3 to design a robust, automated species identification system for 41 Philippine frog species (genus Platymantis ), utilizing single-note audio spectrograms. With this model, we explored two concepts: (1) performance of our deep-learning model in discriminating closely-related frog species based on images representing advertisement call notes, and (2) the potential of this platform to accelerate new species discovery. TensorFlow identified species with a ~ 94% overall correct identification rate. Incorporating distributional data increased the overall identification rate to ~ 99%. In applying TensorFlow to a dataset that included undescribed species in addition to known species, our model was able to differentiate undescribed species through variation in “certainty” rate; the overall certainty rate for undescribed species was 65.5% versus 83.6% for described species. This indicates that, in addition to discriminating recognized frog species, our model has the potential to flag possible new species. As such, this work represents a proof-of-concept for automated, accelerated detection of novel species using acoustic mate-recognition signals, that can be applied to other groups characterized by vibrational cues, seismic signals, and vibrational mate-recognition.
doi_str_mv 10.1007/s10531-020-02107-1
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2493882668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A727332101</galeid><sourcerecordid>A727332101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-796dfa90f3fc03960d6618f7daba3900f2d3e45c11b2bc7d9e82646e354a05703</originalsourceid><addsrcrecordid>eNp9kc9u3CAQxlHVSN0mfYGekHppD04Hszb2MUrTP1Kk5pCeEQvDZiIbXGBT7XPkhcvWlXqrEGIE32-YmY-xtwIuBYD6mAV0UjTQQt0CVCNesI3oVNuMSsBLtoGxh0YK0b1ir3N-hAp1vdiw50-IC5_QpEBhz2leUnzCzI2Nh1zI8h1FR0-YMpUjn2OgEtNJaYLjAX9xWwNypiD3MWEu3Ke453lBSzUNOQyFPFlTKAb-fo_hkPndZMpxNvUlf-AUeHlAfvdAEy0LBcwX7MybKeObv-c5-_H55v76a3P7_cu366vbxspuKI0ae-fNCF56C7L25_peDF45szNyBPCtk7jtrBC7dmeVG3Fo-22Pstsa6BTIc_ZuzVt7_nmotevHeEihfqnb7SiHKu-HqrpcVXszoabgY0nG1uVwJhsDeqr3V6pVUtbRiwq0K2BTzDmh10ui2aSjFqBPbunVLV3d0n_c0idIrlBeTuPF9K-W_1C_AcaPmmY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493882668</pqid></control><display><type>article</type><title>Deep learning improves acoustic biodiversity monitoring and new candidate forest frog species identification (genus Platymantis) in the Philippines</title><source>SpringerNature Journals</source><creator>Khalighifar, Ali ; Brown, Rafe M. ; Goyes Vallejos, Johana ; Peterson, A. Townsend</creator><creatorcontrib>Khalighifar, Ali ; Brown, Rafe M. ; Goyes Vallejos, Johana ; Peterson, A. Townsend</creatorcontrib><description>One significant challenge to biodiversity assessment and conservation is persistent gaps in species diversity knowledge in Earth’s most biodiverse areas. Monitoring devices that utilize species-specific advertisement calls show promise in overcoming challenges associated with lagging frog species discovery rates. However, these devices generate data at paces faster than it can be analyzed. As such, automated platforms capable of efficient data processing and accurate species-level identification are at a premium. In addressing this gap, we used TensorFlow Inception v3 to design a robust, automated species identification system for 41 Philippine frog species (genus Platymantis ), utilizing single-note audio spectrograms. With this model, we explored two concepts: (1) performance of our deep-learning model in discriminating closely-related frog species based on images representing advertisement call notes, and (2) the potential of this platform to accelerate new species discovery. TensorFlow identified species with a ~ 94% overall correct identification rate. Incorporating distributional data increased the overall identification rate to ~ 99%. In applying TensorFlow to a dataset that included undescribed species in addition to known species, our model was able to differentiate undescribed species through variation in “certainty” rate; the overall certainty rate for undescribed species was 65.5% versus 83.6% for described species. This indicates that, in addition to discriminating recognized frog species, our model has the potential to flag possible new species. As such, this work represents a proof-of-concept for automated, accelerated detection of novel species using acoustic mate-recognition signals, that can be applied to other groups characterized by vibrational cues, seismic signals, and vibrational mate-recognition.</description><identifier>ISSN: 0960-3115</identifier><identifier>EISSN: 1572-9710</identifier><identifier>DOI: 10.1007/s10531-020-02107-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Amphibians ; Analysis ; Animal species ; Automation ; Biodiversity ; Biological diversity conservation ; Biological monitoring ; Biomedical and Life Sciences ; Climate Change/Climate Change Impacts ; Conservation Biology/Ecology ; Data analysis ; Data processing ; Deep learning ; Ecology ; Electronic devices ; Frogs ; Identification ; Life Sciences ; Monitoring ; New species ; Original Paper ; Physical characteristics ; Platymantis ; Recognition ; Species diversity ; Species identification ; Spectrograms ; Wildlife conservation ; Work platforms</subject><ispartof>Biodiversity and conservation, 2021-03, Vol.30 (3), p.643-657</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-796dfa90f3fc03960d6618f7daba3900f2d3e45c11b2bc7d9e82646e354a05703</citedby><cites>FETCH-LOGICAL-c358t-796dfa90f3fc03960d6618f7daba3900f2d3e45c11b2bc7d9e82646e354a05703</cites><orcidid>0000-0002-2949-8143</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10531-020-02107-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10531-020-02107-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Khalighifar, Ali</creatorcontrib><creatorcontrib>Brown, Rafe M.</creatorcontrib><creatorcontrib>Goyes Vallejos, Johana</creatorcontrib><creatorcontrib>Peterson, A. Townsend</creatorcontrib><title>Deep learning improves acoustic biodiversity monitoring and new candidate forest frog species identification (genus Platymantis) in the Philippines</title><title>Biodiversity and conservation</title><addtitle>Biodivers Conserv</addtitle><description>One significant challenge to biodiversity assessment and conservation is persistent gaps in species diversity knowledge in Earth’s most biodiverse areas. Monitoring devices that utilize species-specific advertisement calls show promise in overcoming challenges associated with lagging frog species discovery rates. However, these devices generate data at paces faster than it can be analyzed. As such, automated platforms capable of efficient data processing and accurate species-level identification are at a premium. In addressing this gap, we used TensorFlow Inception v3 to design a robust, automated species identification system for 41 Philippine frog species (genus Platymantis ), utilizing single-note audio spectrograms. With this model, we explored two concepts: (1) performance of our deep-learning model in discriminating closely-related frog species based on images representing advertisement call notes, and (2) the potential of this platform to accelerate new species discovery. TensorFlow identified species with a ~ 94% overall correct identification rate. Incorporating distributional data increased the overall identification rate to ~ 99%. In applying TensorFlow to a dataset that included undescribed species in addition to known species, our model was able to differentiate undescribed species through variation in “certainty” rate; the overall certainty rate for undescribed species was 65.5% versus 83.6% for described species. This indicates that, in addition to discriminating recognized frog species, our model has the potential to flag possible new species. As such, this work represents a proof-of-concept for automated, accelerated detection of novel species using acoustic mate-recognition signals, that can be applied to other groups characterized by vibrational cues, seismic signals, and vibrational mate-recognition.</description><subject>Amphibians</subject><subject>Analysis</subject><subject>Animal species</subject><subject>Automation</subject><subject>Biodiversity</subject><subject>Biological diversity conservation</subject><subject>Biological monitoring</subject><subject>Biomedical and Life Sciences</subject><subject>Climate Change/Climate Change Impacts</subject><subject>Conservation Biology/Ecology</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Deep learning</subject><subject>Ecology</subject><subject>Electronic devices</subject><subject>Frogs</subject><subject>Identification</subject><subject>Life Sciences</subject><subject>Monitoring</subject><subject>New species</subject><subject>Original Paper</subject><subject>Physical characteristics</subject><subject>Platymantis</subject><subject>Recognition</subject><subject>Species diversity</subject><subject>Species identification</subject><subject>Spectrograms</subject><subject>Wildlife conservation</subject><subject>Work platforms</subject><issn>0960-3115</issn><issn>1572-9710</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc9u3CAQxlHVSN0mfYGekHppD04Hszb2MUrTP1Kk5pCeEQvDZiIbXGBT7XPkhcvWlXqrEGIE32-YmY-xtwIuBYD6mAV0UjTQQt0CVCNesI3oVNuMSsBLtoGxh0YK0b1ir3N-hAp1vdiw50-IC5_QpEBhz2leUnzCzI2Nh1zI8h1FR0-YMpUjn2OgEtNJaYLjAX9xWwNypiD3MWEu3Ke453lBSzUNOQyFPFlTKAb-fo_hkPndZMpxNvUlf-AUeHlAfvdAEy0LBcwX7MybKeObv-c5-_H55v76a3P7_cu366vbxspuKI0ae-fNCF56C7L25_peDF45szNyBPCtk7jtrBC7dmeVG3Fo-22Pstsa6BTIc_ZuzVt7_nmotevHeEihfqnb7SiHKu-HqrpcVXszoabgY0nG1uVwJhsDeqr3V6pVUtbRiwq0K2BTzDmh10ui2aSjFqBPbunVLV3d0n_c0idIrlBeTuPF9K-W_1C_AcaPmmY</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Khalighifar, Ali</creator><creator>Brown, Rafe M.</creator><creator>Goyes Vallejos, Johana</creator><creator>Peterson, A. Townsend</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7U6</scope><scope>7X2</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M0K</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-2949-8143</orcidid></search><sort><creationdate>20210301</creationdate><title>Deep learning improves acoustic biodiversity monitoring and new candidate forest frog species identification (genus Platymantis) in the Philippines</title><author>Khalighifar, Ali ; Brown, Rafe M. ; Goyes Vallejos, Johana ; Peterson, A. Townsend</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-796dfa90f3fc03960d6618f7daba3900f2d3e45c11b2bc7d9e82646e354a05703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amphibians</topic><topic>Analysis</topic><topic>Animal species</topic><topic>Automation</topic><topic>Biodiversity</topic><topic>Biological diversity conservation</topic><topic>Biological monitoring</topic><topic>Biomedical and Life Sciences</topic><topic>Climate Change/Climate Change Impacts</topic><topic>Conservation Biology/Ecology</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Deep learning</topic><topic>Ecology</topic><topic>Electronic devices</topic><topic>Frogs</topic><topic>Identification</topic><topic>Life Sciences</topic><topic>Monitoring</topic><topic>New species</topic><topic>Original Paper</topic><topic>Physical characteristics</topic><topic>Platymantis</topic><topic>Recognition</topic><topic>Species diversity</topic><topic>Species identification</topic><topic>Spectrograms</topic><topic>Wildlife conservation</topic><topic>Work platforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khalighifar, Ali</creatorcontrib><creatorcontrib>Brown, Rafe M.</creatorcontrib><creatorcontrib>Goyes Vallejos, Johana</creatorcontrib><creatorcontrib>Peterson, A. Townsend</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Biodiversity and conservation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khalighifar, Ali</au><au>Brown, Rafe M.</au><au>Goyes Vallejos, Johana</au><au>Peterson, A. Townsend</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning improves acoustic biodiversity monitoring and new candidate forest frog species identification (genus Platymantis) in the Philippines</atitle><jtitle>Biodiversity and conservation</jtitle><stitle>Biodivers Conserv</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>30</volume><issue>3</issue><spage>643</spage><epage>657</epage><pages>643-657</pages><issn>0960-3115</issn><eissn>1572-9710</eissn><abstract>One significant challenge to biodiversity assessment and conservation is persistent gaps in species diversity knowledge in Earth’s most biodiverse areas. Monitoring devices that utilize species-specific advertisement calls show promise in overcoming challenges associated with lagging frog species discovery rates. However, these devices generate data at paces faster than it can be analyzed. As such, automated platforms capable of efficient data processing and accurate species-level identification are at a premium. In addressing this gap, we used TensorFlow Inception v3 to design a robust, automated species identification system for 41 Philippine frog species (genus Platymantis ), utilizing single-note audio spectrograms. With this model, we explored two concepts: (1) performance of our deep-learning model in discriminating closely-related frog species based on images representing advertisement call notes, and (2) the potential of this platform to accelerate new species discovery. TensorFlow identified species with a ~ 94% overall correct identification rate. Incorporating distributional data increased the overall identification rate to ~ 99%. In applying TensorFlow to a dataset that included undescribed species in addition to known species, our model was able to differentiate undescribed species through variation in “certainty” rate; the overall certainty rate for undescribed species was 65.5% versus 83.6% for described species. This indicates that, in addition to discriminating recognized frog species, our model has the potential to flag possible new species. As such, this work represents a proof-of-concept for automated, accelerated detection of novel species using acoustic mate-recognition signals, that can be applied to other groups characterized by vibrational cues, seismic signals, and vibrational mate-recognition.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10531-020-02107-1</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2949-8143</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0960-3115
ispartof Biodiversity and conservation, 2021-03, Vol.30 (3), p.643-657
issn 0960-3115
1572-9710
language eng
recordid cdi_proquest_journals_2493882668
source SpringerNature Journals
subjects Amphibians
Analysis
Animal species
Automation
Biodiversity
Biological diversity conservation
Biological monitoring
Biomedical and Life Sciences
Climate Change/Climate Change Impacts
Conservation Biology/Ecology
Data analysis
Data processing
Deep learning
Ecology
Electronic devices
Frogs
Identification
Life Sciences
Monitoring
New species
Original Paper
Physical characteristics
Platymantis
Recognition
Species diversity
Species identification
Spectrograms
Wildlife conservation
Work platforms
title Deep learning improves acoustic biodiversity monitoring and new candidate forest frog species identification (genus Platymantis) in the Philippines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T00%3A04%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20improves%20acoustic%20biodiversity%20monitoring%20and%20new%20candidate%20forest%20frog%20species%20identification%20(genus%20Platymantis)%20in%20the%20Philippines&rft.jtitle=Biodiversity%20and%20conservation&rft.au=Khalighifar,%20Ali&rft.date=2021-03-01&rft.volume=30&rft.issue=3&rft.spage=643&rft.epage=657&rft.pages=643-657&rft.issn=0960-3115&rft.eissn=1572-9710&rft_id=info:doi/10.1007/s10531-020-02107-1&rft_dat=%3Cgale_proqu%3EA727332101%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2493882668&rft_id=info:pmid/&rft_galeid=A727332101&rfr_iscdi=true