Accelerated Development of High-Strength Magnesium Alloys by Machine Learning

Magnesium (Mg) has a strong application potential as a lightweight metal. Yet, its absolute strength still needs improvement. In this work, we demonstrate that machine learning can be utilized to guide the development of high-strength Mg cast alloys. In the design framework, the composition and heat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2021-03, Vol.52 (3), p.943-954
Hauptverfasser: Liu, Yanwei, Wang, Leyun, Zhang, Huan, Zhu, Gaoming, Wang, Jie, Zhang, Yuhui, Zeng, Xiaoqin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 954
container_issue 3
container_start_page 943
container_title Metallurgical and materials transactions. A, Physical metallurgy and materials science
container_volume 52
creator Liu, Yanwei
Wang, Leyun
Zhang, Huan
Zhu, Gaoming
Wang, Jie
Zhang, Yuhui
Zeng, Xiaoqin
description Magnesium (Mg) has a strong application potential as a lightweight metal. Yet, its absolute strength still needs improvement. In this work, we demonstrate that machine learning can be utilized to guide the development of high-strength Mg cast alloys. In the design framework, the composition and heat treatment condition are iteratively optimized by a surrogate model that is also evolving. After two iterations, a new alloy with the composition of Mg-10.0Al-2.0Sn-2.0Zn-0.1Ca-0.1Mn (at. pct) was identified. After aging at 200 °C for 96 hours, this alloy shows a Vickers hardness value of 110.5 Hv, which surpasses the highest value (102.5 Hv) in the initial dataset from literature. Finally, microstructure of the optimized alloy was characterized to understand the origin of its high hardness. This work demonstrates the potential of data-driven approaches for material development.
doi_str_mv 10.1007/s11661-020-06132-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2493882519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2493882519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1b0add95d479f915a985f1defc58728ee3693644953eb8a51db99f26e68925a33</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSMEEqPwBThV4hyIkyZtjtP4M6RNHIBzlLZu16lLR9Ih7dsTKBI3Tras957tHyHXwG6BsfwuACgFlHFGmQLBKZyQGchMUNAZO409ywWViotzchHCljEGWqgZWc-rCnv0dsQ6vcdP7If9Dt2YDk267NoNfR09unbcpGvbOgzdYZfO-344hrQ8xlm16RymK7Teda69JGeN7QNe_daEvD8-vC2WdPXy9LyYr2glQI8USmbrWss6y3WjQVpdyAZqbCpZ5LxAFCoel2VaCiwLK6EutW64QlVoLq0QCbmZcvd--DhgGM12OHgXVxqeaVEUXMb3EsInVeWHEDw2Zu-7nfVHA8x8YzMTNhOxmR9sBqJJTKYQxa5F_xf9j-sL1A5vCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493882519</pqid></control><display><type>article</type><title>Accelerated Development of High-Strength Magnesium Alloys by Machine Learning</title><source>SpringerLink Journals</source><creator>Liu, Yanwei ; Wang, Leyun ; Zhang, Huan ; Zhu, Gaoming ; Wang, Jie ; Zhang, Yuhui ; Zeng, Xiaoqin</creator><creatorcontrib>Liu, Yanwei ; Wang, Leyun ; Zhang, Huan ; Zhu, Gaoming ; Wang, Jie ; Zhang, Yuhui ; Zeng, Xiaoqin</creatorcontrib><description>Magnesium (Mg) has a strong application potential as a lightweight metal. Yet, its absolute strength still needs improvement. In this work, we demonstrate that machine learning can be utilized to guide the development of high-strength Mg cast alloys. In the design framework, the composition and heat treatment condition are iteratively optimized by a surrogate model that is also evolving. After two iterations, a new alloy with the composition of Mg-10.0Al-2.0Sn-2.0Zn-0.1Ca-0.1Mn (at. pct) was identified. After aging at 200 °C for 96 hours, this alloy shows a Vickers hardness value of 110.5 Hv, which surpasses the highest value (102.5 Hv) in the initial dataset from literature. Finally, microstructure of the optimized alloy was characterized to understand the origin of its high hardness. This work demonstrates the potential of data-driven approaches for material development.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-020-06132-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aging (metallurgy) ; Alloys ; Casting alloys ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Composition ; Diamond pyramid hardness ; Heat treatment ; High strength alloys ; Machine learning ; Magnesium base alloys ; Materials Science ; Metallic Materials ; Nanotechnology ; Original Research Article ; Structural Materials ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2021-03, Vol.52 (3), p.943-954</ispartof><rights>The Minerals, Metals &amp; Materials Society and ASM International 2021</rights><rights>The Minerals, Metals &amp; Materials Society and ASM International 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-1b0add95d479f915a985f1defc58728ee3693644953eb8a51db99f26e68925a33</citedby><cites>FETCH-LOGICAL-c319t-1b0add95d479f915a985f1defc58728ee3693644953eb8a51db99f26e68925a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-020-06132-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-020-06132-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Liu, Yanwei</creatorcontrib><creatorcontrib>Wang, Leyun</creatorcontrib><creatorcontrib>Zhang, Huan</creatorcontrib><creatorcontrib>Zhu, Gaoming</creatorcontrib><creatorcontrib>Wang, Jie</creatorcontrib><creatorcontrib>Zhang, Yuhui</creatorcontrib><creatorcontrib>Zeng, Xiaoqin</creatorcontrib><title>Accelerated Development of High-Strength Magnesium Alloys by Machine Learning</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>Magnesium (Mg) has a strong application potential as a lightweight metal. Yet, its absolute strength still needs improvement. In this work, we demonstrate that machine learning can be utilized to guide the development of high-strength Mg cast alloys. In the design framework, the composition and heat treatment condition are iteratively optimized by a surrogate model that is also evolving. After two iterations, a new alloy with the composition of Mg-10.0Al-2.0Sn-2.0Zn-0.1Ca-0.1Mn (at. pct) was identified. After aging at 200 °C for 96 hours, this alloy shows a Vickers hardness value of 110.5 Hv, which surpasses the highest value (102.5 Hv) in the initial dataset from literature. Finally, microstructure of the optimized alloy was characterized to understand the origin of its high hardness. This work demonstrates the potential of data-driven approaches for material development.</description><subject>Aging (metallurgy)</subject><subject>Alloys</subject><subject>Casting alloys</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Composition</subject><subject>Diamond pyramid hardness</subject><subject>Heat treatment</subject><subject>High strength alloys</subject><subject>Machine learning</subject><subject>Magnesium base alloys</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Nanotechnology</subject><subject>Original Research Article</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE9PwzAMxSMEEqPwBThV4hyIkyZtjtP4M6RNHIBzlLZu16lLR9Ih7dsTKBI3Tras957tHyHXwG6BsfwuACgFlHFGmQLBKZyQGchMUNAZO409ywWViotzchHCljEGWqgZWc-rCnv0dsQ6vcdP7If9Dt2YDk267NoNfR09unbcpGvbOgzdYZfO-344hrQ8xlm16RymK7Teda69JGeN7QNe_daEvD8-vC2WdPXy9LyYr2glQI8USmbrWss6y3WjQVpdyAZqbCpZ5LxAFCoel2VaCiwLK6EutW64QlVoLq0QCbmZcvd--DhgGM12OHgXVxqeaVEUXMb3EsInVeWHEDw2Zu-7nfVHA8x8YzMTNhOxmR9sBqJJTKYQxa5F_xf9j-sL1A5vCw</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Liu, Yanwei</creator><creator>Wang, Leyun</creator><creator>Zhang, Huan</creator><creator>Zhu, Gaoming</creator><creator>Wang, Jie</creator><creator>Zhang, Yuhui</creator><creator>Zeng, Xiaoqin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20210301</creationdate><title>Accelerated Development of High-Strength Magnesium Alloys by Machine Learning</title><author>Liu, Yanwei ; Wang, Leyun ; Zhang, Huan ; Zhu, Gaoming ; Wang, Jie ; Zhang, Yuhui ; Zeng, Xiaoqin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1b0add95d479f915a985f1defc58728ee3693644953eb8a51db99f26e68925a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aging (metallurgy)</topic><topic>Alloys</topic><topic>Casting alloys</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Composition</topic><topic>Diamond pyramid hardness</topic><topic>Heat treatment</topic><topic>High strength alloys</topic><topic>Machine learning</topic><topic>Magnesium base alloys</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Nanotechnology</topic><topic>Original Research Article</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yanwei</creatorcontrib><creatorcontrib>Wang, Leyun</creatorcontrib><creatorcontrib>Zhang, Huan</creatorcontrib><creatorcontrib>Zhu, Gaoming</creatorcontrib><creatorcontrib>Wang, Jie</creatorcontrib><creatorcontrib>Zhang, Yuhui</creatorcontrib><creatorcontrib>Zeng, Xiaoqin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yanwei</au><au>Wang, Leyun</au><au>Zhang, Huan</au><au>Zhu, Gaoming</au><au>Wang, Jie</au><au>Zhang, Yuhui</au><au>Zeng, Xiaoqin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerated Development of High-Strength Magnesium Alloys by Machine Learning</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>52</volume><issue>3</issue><spage>943</spage><epage>954</epage><pages>943-954</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><abstract>Magnesium (Mg) has a strong application potential as a lightweight metal. Yet, its absolute strength still needs improvement. In this work, we demonstrate that machine learning can be utilized to guide the development of high-strength Mg cast alloys. In the design framework, the composition and heat treatment condition are iteratively optimized by a surrogate model that is also evolving. After two iterations, a new alloy with the composition of Mg-10.0Al-2.0Sn-2.0Zn-0.1Ca-0.1Mn (at. pct) was identified. After aging at 200 °C for 96 hours, this alloy shows a Vickers hardness value of 110.5 Hv, which surpasses the highest value (102.5 Hv) in the initial dataset from literature. Finally, microstructure of the optimized alloy was characterized to understand the origin of its high hardness. This work demonstrates the potential of data-driven approaches for material development.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11661-020-06132-1</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-5623
ispartof Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2021-03, Vol.52 (3), p.943-954
issn 1073-5623
1543-1940
language eng
recordid cdi_proquest_journals_2493882519
source SpringerLink Journals
subjects Aging (metallurgy)
Alloys
Casting alloys
Characterization and Evaluation of Materials
Chemistry and Materials Science
Composition
Diamond pyramid hardness
Heat treatment
High strength alloys
Machine learning
Magnesium base alloys
Materials Science
Metallic Materials
Nanotechnology
Original Research Article
Structural Materials
Surfaces and Interfaces
Thin Films
title Accelerated Development of High-Strength Magnesium Alloys by Machine Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A48%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerated%20Development%20of%20High-Strength%20Magnesium%20Alloys%20by%20Machine%20Learning&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Liu,%20Yanwei&rft.date=2021-03-01&rft.volume=52&rft.issue=3&rft.spage=943&rft.epage=954&rft.pages=943-954&rft.issn=1073-5623&rft.eissn=1543-1940&rft_id=info:doi/10.1007/s11661-020-06132-1&rft_dat=%3Cproquest_cross%3E2493882519%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2493882519&rft_id=info:pmid/&rfr_iscdi=true