High-temperature tensile characteristics and constitutive models of ultrahigh strength steel
In this investigation, the isothermal tensile experiments over wide ranges of deformation parameters (strain rate and tensile temperature) are conducted for studying the high-temperature tensile behaviors of an ultrahigh strength steel. The influences of deformation parameter on high-temperature ten...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2021-01, Vol.803, p.140491, Article 140491 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 140491 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 803 |
creator | Wen, DongXu Yue, TianYu Xiong, YiBo Wang, Kang Wang, JiaKai Zheng, ZhiZhen Li, JianJun |
description | In this investigation, the isothermal tensile experiments over wide ranges of deformation parameters (strain rate and tensile temperature) are conducted for studying the high-temperature tensile behaviors of an ultrahigh strength steel. The influences of deformation parameter on high-temperature tensile behaviors, fracture characteristics and deformation mechanisms are analyzed. Moreover, Arrhenius-type phenomenological (AP) model developed by the regression method or the Nelder-Mead (NM) simplex method, and the artificial-neural-network (ANN) model developed by combining genetic algorithm (GA) and back propagation learning algorithm (BP) are proposed, respectively. The results show that the high-temperature tensile behavior of the studied steel exhibits the typical work hardening and dynamic recovery characteristics. The necking capability increases with the strain rate decreasing and tensile temperature increasing. However, the large deep dimples dramatically deteriorate the loading capability during the localized necking, leading to the poor elongation to fracture at low strain rate. Both for the modeling and verifying data, the AP model developed by the NM simplex method shows the relatively high relative coefficient (higher than 0.9963), low average absolute relative error (lower than 1.6692%) and narrow error band (controlled in ±6.8MPa), compared with the AP model developed by the regression method and the GA-BP ANN model. |
doi_str_mv | 10.1016/j.msea.2020.140491 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2493861164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509320315549</els_id><sourcerecordid>2493861164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-aabf5c420867a5670bcedd9eed4ea2ba633335f29e70518b6aab886bce9131d53</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoHPAU8d81Hm6bgRRa_YMGL3oSQptPdlLZZk3TBf29KPTuX-eC9NzMPoVtKNpRQcd9thgB6wwhLg5zkFT1DKypLnuUVF-doRSpGs4JU_BJdhdARQhKsWKGvV7s_ZBGGI3gdJw84whhsD9gctNcmgrchWhOwHhts3JiaOEV7Ajy4BvqAXYunPnp9SEI4RA_jPs4FQH-NLlrdB7j5y2v0-fz0sX3Ndu8vb9vHXWY4kzHTum4LkzMiRakLUZLaQNNUAE0OmtVa8BRFyyooSUFlLRJBSpFQFeW0Kfga3S26R---JwhRdW7yY1qpWPpfCkpFnlBsQRnvQvDQqqO3g_Y_ihI1u6g6NbuoZhfV4mIiPSyk9CqcLHgVjIUxHWg9mKgaZ_-j_wKKlX1H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493861164</pqid></control><display><type>article</type><title>High-temperature tensile characteristics and constitutive models of ultrahigh strength steel</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Wen, DongXu ; Yue, TianYu ; Xiong, YiBo ; Wang, Kang ; Wang, JiaKai ; Zheng, ZhiZhen ; Li, JianJun</creator><creatorcontrib>Wen, DongXu ; Yue, TianYu ; Xiong, YiBo ; Wang, Kang ; Wang, JiaKai ; Zheng, ZhiZhen ; Li, JianJun</creatorcontrib><description>In this investigation, the isothermal tensile experiments over wide ranges of deformation parameters (strain rate and tensile temperature) are conducted for studying the high-temperature tensile behaviors of an ultrahigh strength steel. The influences of deformation parameter on high-temperature tensile behaviors, fracture characteristics and deformation mechanisms are analyzed. Moreover, Arrhenius-type phenomenological (AP) model developed by the regression method or the Nelder-Mead (NM) simplex method, and the artificial-neural-network (ANN) model developed by combining genetic algorithm (GA) and back propagation learning algorithm (BP) are proposed, respectively. The results show that the high-temperature tensile behavior of the studied steel exhibits the typical work hardening and dynamic recovery characteristics. The necking capability increases with the strain rate decreasing and tensile temperature increasing. However, the large deep dimples dramatically deteriorate the loading capability during the localized necking, leading to the poor elongation to fracture at low strain rate. Both for the modeling and verifying data, the AP model developed by the NM simplex method shows the relatively high relative coefficient (higher than 0.9963), low average absolute relative error (lower than 1.6692%) and narrow error band (controlled in ±6.8MPa), compared with the AP model developed by the regression method and the GA-BP ANN model.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2020.140491</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Back propagation networks ; Constitutive model ; Constitutive models ; Deformation analysis ; Deformation mechanisms ; Dimpling ; Elongation ; Fracture mechanism ; Genetic algorithms ; High strength steels ; High temperature ; High-temperature tensile behavior ; Machine learning ; Necking ; Neural networks ; Parameters ; Regression analysis ; Regression models ; Simplex method ; Strain rate ; Ultrahigh strength steel ; Work hardening</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2021-01, Vol.803, p.140491, Article 140491</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 28, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-aabf5c420867a5670bcedd9eed4ea2ba633335f29e70518b6aab886bce9131d53</citedby><cites>FETCH-LOGICAL-c328t-aabf5c420867a5670bcedd9eed4ea2ba633335f29e70518b6aab886bce9131d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2020.140491$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Wen, DongXu</creatorcontrib><creatorcontrib>Yue, TianYu</creatorcontrib><creatorcontrib>Xiong, YiBo</creatorcontrib><creatorcontrib>Wang, Kang</creatorcontrib><creatorcontrib>Wang, JiaKai</creatorcontrib><creatorcontrib>Zheng, ZhiZhen</creatorcontrib><creatorcontrib>Li, JianJun</creatorcontrib><title>High-temperature tensile characteristics and constitutive models of ultrahigh strength steel</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>In this investigation, the isothermal tensile experiments over wide ranges of deformation parameters (strain rate and tensile temperature) are conducted for studying the high-temperature tensile behaviors of an ultrahigh strength steel. The influences of deformation parameter on high-temperature tensile behaviors, fracture characteristics and deformation mechanisms are analyzed. Moreover, Arrhenius-type phenomenological (AP) model developed by the regression method or the Nelder-Mead (NM) simplex method, and the artificial-neural-network (ANN) model developed by combining genetic algorithm (GA) and back propagation learning algorithm (BP) are proposed, respectively. The results show that the high-temperature tensile behavior of the studied steel exhibits the typical work hardening and dynamic recovery characteristics. The necking capability increases with the strain rate decreasing and tensile temperature increasing. However, the large deep dimples dramatically deteriorate the loading capability during the localized necking, leading to the poor elongation to fracture at low strain rate. Both for the modeling and verifying data, the AP model developed by the NM simplex method shows the relatively high relative coefficient (higher than 0.9963), low average absolute relative error (lower than 1.6692%) and narrow error band (controlled in ±6.8MPa), compared with the AP model developed by the regression method and the GA-BP ANN model.</description><subject>Back propagation networks</subject><subject>Constitutive model</subject><subject>Constitutive models</subject><subject>Deformation analysis</subject><subject>Deformation mechanisms</subject><subject>Dimpling</subject><subject>Elongation</subject><subject>Fracture mechanism</subject><subject>Genetic algorithms</subject><subject>High strength steels</subject><subject>High temperature</subject><subject>High-temperature tensile behavior</subject><subject>Machine learning</subject><subject>Necking</subject><subject>Neural networks</subject><subject>Parameters</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Simplex method</subject><subject>Strain rate</subject><subject>Ultrahigh strength steel</subject><subject>Work hardening</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLguvoHPAU8d81Hm6bgRRa_YMGL3oSQptPdlLZZk3TBf29KPTuX-eC9NzMPoVtKNpRQcd9thgB6wwhLg5zkFT1DKypLnuUVF-doRSpGs4JU_BJdhdARQhKsWKGvV7s_ZBGGI3gdJw84whhsD9gctNcmgrchWhOwHhts3JiaOEV7Ajy4BvqAXYunPnp9SEI4RA_jPs4FQH-NLlrdB7j5y2v0-fz0sX3Ndu8vb9vHXWY4kzHTum4LkzMiRakLUZLaQNNUAE0OmtVa8BRFyyooSUFlLRJBSpFQFeW0Kfga3S26R---JwhRdW7yY1qpWPpfCkpFnlBsQRnvQvDQqqO3g_Y_ihI1u6g6NbuoZhfV4mIiPSyk9CqcLHgVjIUxHWg9mKgaZ_-j_wKKlX1H</recordid><startdate>20210128</startdate><enddate>20210128</enddate><creator>Wen, DongXu</creator><creator>Yue, TianYu</creator><creator>Xiong, YiBo</creator><creator>Wang, Kang</creator><creator>Wang, JiaKai</creator><creator>Zheng, ZhiZhen</creator><creator>Li, JianJun</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20210128</creationdate><title>High-temperature tensile characteristics and constitutive models of ultrahigh strength steel</title><author>Wen, DongXu ; Yue, TianYu ; Xiong, YiBo ; Wang, Kang ; Wang, JiaKai ; Zheng, ZhiZhen ; Li, JianJun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-aabf5c420867a5670bcedd9eed4ea2ba633335f29e70518b6aab886bce9131d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Back propagation networks</topic><topic>Constitutive model</topic><topic>Constitutive models</topic><topic>Deformation analysis</topic><topic>Deformation mechanisms</topic><topic>Dimpling</topic><topic>Elongation</topic><topic>Fracture mechanism</topic><topic>Genetic algorithms</topic><topic>High strength steels</topic><topic>High temperature</topic><topic>High-temperature tensile behavior</topic><topic>Machine learning</topic><topic>Necking</topic><topic>Neural networks</topic><topic>Parameters</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Simplex method</topic><topic>Strain rate</topic><topic>Ultrahigh strength steel</topic><topic>Work hardening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen, DongXu</creatorcontrib><creatorcontrib>Yue, TianYu</creatorcontrib><creatorcontrib>Xiong, YiBo</creatorcontrib><creatorcontrib>Wang, Kang</creatorcontrib><creatorcontrib>Wang, JiaKai</creatorcontrib><creatorcontrib>Zheng, ZhiZhen</creatorcontrib><creatorcontrib>Li, JianJun</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wen, DongXu</au><au>Yue, TianYu</au><au>Xiong, YiBo</au><au>Wang, Kang</au><au>Wang, JiaKai</au><au>Zheng, ZhiZhen</au><au>Li, JianJun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-temperature tensile characteristics and constitutive models of ultrahigh strength steel</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2021-01-28</date><risdate>2021</risdate><volume>803</volume><spage>140491</spage><pages>140491-</pages><artnum>140491</artnum><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>In this investigation, the isothermal tensile experiments over wide ranges of deformation parameters (strain rate and tensile temperature) are conducted for studying the high-temperature tensile behaviors of an ultrahigh strength steel. The influences of deformation parameter on high-temperature tensile behaviors, fracture characteristics and deformation mechanisms are analyzed. Moreover, Arrhenius-type phenomenological (AP) model developed by the regression method or the Nelder-Mead (NM) simplex method, and the artificial-neural-network (ANN) model developed by combining genetic algorithm (GA) and back propagation learning algorithm (BP) are proposed, respectively. The results show that the high-temperature tensile behavior of the studied steel exhibits the typical work hardening and dynamic recovery characteristics. The necking capability increases with the strain rate decreasing and tensile temperature increasing. However, the large deep dimples dramatically deteriorate the loading capability during the localized necking, leading to the poor elongation to fracture at low strain rate. Both for the modeling and verifying data, the AP model developed by the NM simplex method shows the relatively high relative coefficient (higher than 0.9963), low average absolute relative error (lower than 1.6692%) and narrow error band (controlled in ±6.8MPa), compared with the AP model developed by the regression method and the GA-BP ANN model.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2020.140491</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2021-01, Vol.803, p.140491, Article 140491 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_proquest_journals_2493861164 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Back propagation networks Constitutive model Constitutive models Deformation analysis Deformation mechanisms Dimpling Elongation Fracture mechanism Genetic algorithms High strength steels High temperature High-temperature tensile behavior Machine learning Necking Neural networks Parameters Regression analysis Regression models Simplex method Strain rate Ultrahigh strength steel Work hardening |
title | High-temperature tensile characteristics and constitutive models of ultrahigh strength steel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A55%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-temperature%20tensile%20characteristics%20and%20constitutive%20models%20of%20ultrahigh%20strength%20steel&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Wen,%20DongXu&rft.date=2021-01-28&rft.volume=803&rft.spage=140491&rft.pages=140491-&rft.artnum=140491&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2020.140491&rft_dat=%3Cproquest_cross%3E2493861164%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2493861164&rft_id=info:pmid/&rft_els_id=S0921509320315549&rfr_iscdi=true |