High-temperature tensile characteristics and constitutive models of ultrahigh strength steel

In this investigation, the isothermal tensile experiments over wide ranges of deformation parameters (strain rate and tensile temperature) are conducted for studying the high-temperature tensile behaviors of an ultrahigh strength steel. The influences of deformation parameter on high-temperature ten...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2021-01, Vol.803, p.140491, Article 140491
Hauptverfasser: Wen, DongXu, Yue, TianYu, Xiong, YiBo, Wang, Kang, Wang, JiaKai, Zheng, ZhiZhen, Li, JianJun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 140491
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 803
creator Wen, DongXu
Yue, TianYu
Xiong, YiBo
Wang, Kang
Wang, JiaKai
Zheng, ZhiZhen
Li, JianJun
description In this investigation, the isothermal tensile experiments over wide ranges of deformation parameters (strain rate and tensile temperature) are conducted for studying the high-temperature tensile behaviors of an ultrahigh strength steel. The influences of deformation parameter on high-temperature tensile behaviors, fracture characteristics and deformation mechanisms are analyzed. Moreover, Arrhenius-type phenomenological (AP) model developed by the regression method or the Nelder-Mead (NM) simplex method, and the artificial-neural-network (ANN) model developed by combining genetic algorithm (GA) and back propagation learning algorithm (BP) are proposed, respectively. The results show that the high-temperature tensile behavior of the studied steel exhibits the typical work hardening and dynamic recovery characteristics. The necking capability increases with the strain rate decreasing and tensile temperature increasing. However, the large deep dimples dramatically deteriorate the loading capability during the localized necking, leading to the poor elongation to fracture at low strain rate. Both for the modeling and verifying data, the AP model developed by the NM simplex method shows the relatively high relative coefficient (higher than 0.9963), low average absolute relative error (lower than 1.6692%) and narrow error band (controlled in ±6.8MPa), compared with the AP model developed by the regression method and the GA-BP ANN model.
doi_str_mv 10.1016/j.msea.2020.140491
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2493861164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509320315549</els_id><sourcerecordid>2493861164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-aabf5c420867a5670bcedd9eed4ea2ba633335f29e70518b6aab886bce9131d53</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoHPAU8d81Hm6bgRRa_YMGL3oSQptPdlLZZk3TBf29KPTuX-eC9NzMPoVtKNpRQcd9thgB6wwhLg5zkFT1DKypLnuUVF-doRSpGs4JU_BJdhdARQhKsWKGvV7s_ZBGGI3gdJw84whhsD9gctNcmgrchWhOwHhts3JiaOEV7Ajy4BvqAXYunPnp9SEI4RA_jPs4FQH-NLlrdB7j5y2v0-fz0sX3Ndu8vb9vHXWY4kzHTum4LkzMiRakLUZLaQNNUAE0OmtVa8BRFyyooSUFlLRJBSpFQFeW0Kfga3S26R---JwhRdW7yY1qpWPpfCkpFnlBsQRnvQvDQqqO3g_Y_ihI1u6g6NbuoZhfV4mIiPSyk9CqcLHgVjIUxHWg9mKgaZ_-j_wKKlX1H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493861164</pqid></control><display><type>article</type><title>High-temperature tensile characteristics and constitutive models of ultrahigh strength steel</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Wen, DongXu ; Yue, TianYu ; Xiong, YiBo ; Wang, Kang ; Wang, JiaKai ; Zheng, ZhiZhen ; Li, JianJun</creator><creatorcontrib>Wen, DongXu ; Yue, TianYu ; Xiong, YiBo ; Wang, Kang ; Wang, JiaKai ; Zheng, ZhiZhen ; Li, JianJun</creatorcontrib><description>In this investigation, the isothermal tensile experiments over wide ranges of deformation parameters (strain rate and tensile temperature) are conducted for studying the high-temperature tensile behaviors of an ultrahigh strength steel. The influences of deformation parameter on high-temperature tensile behaviors, fracture characteristics and deformation mechanisms are analyzed. Moreover, Arrhenius-type phenomenological (AP) model developed by the regression method or the Nelder-Mead (NM) simplex method, and the artificial-neural-network (ANN) model developed by combining genetic algorithm (GA) and back propagation learning algorithm (BP) are proposed, respectively. The results show that the high-temperature tensile behavior of the studied steel exhibits the typical work hardening and dynamic recovery characteristics. The necking capability increases with the strain rate decreasing and tensile temperature increasing. However, the large deep dimples dramatically deteriorate the loading capability during the localized necking, leading to the poor elongation to fracture at low strain rate. Both for the modeling and verifying data, the AP model developed by the NM simplex method shows the relatively high relative coefficient (higher than 0.9963), low average absolute relative error (lower than 1.6692%) and narrow error band (controlled in ±6.8MPa), compared with the AP model developed by the regression method and the GA-BP ANN model.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2020.140491</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Back propagation networks ; Constitutive model ; Constitutive models ; Deformation analysis ; Deformation mechanisms ; Dimpling ; Elongation ; Fracture mechanism ; Genetic algorithms ; High strength steels ; High temperature ; High-temperature tensile behavior ; Machine learning ; Necking ; Neural networks ; Parameters ; Regression analysis ; Regression models ; Simplex method ; Strain rate ; Ultrahigh strength steel ; Work hardening</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2021-01, Vol.803, p.140491, Article 140491</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 28, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-aabf5c420867a5670bcedd9eed4ea2ba633335f29e70518b6aab886bce9131d53</citedby><cites>FETCH-LOGICAL-c328t-aabf5c420867a5670bcedd9eed4ea2ba633335f29e70518b6aab886bce9131d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2020.140491$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Wen, DongXu</creatorcontrib><creatorcontrib>Yue, TianYu</creatorcontrib><creatorcontrib>Xiong, YiBo</creatorcontrib><creatorcontrib>Wang, Kang</creatorcontrib><creatorcontrib>Wang, JiaKai</creatorcontrib><creatorcontrib>Zheng, ZhiZhen</creatorcontrib><creatorcontrib>Li, JianJun</creatorcontrib><title>High-temperature tensile characteristics and constitutive models of ultrahigh strength steel</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>In this investigation, the isothermal tensile experiments over wide ranges of deformation parameters (strain rate and tensile temperature) are conducted for studying the high-temperature tensile behaviors of an ultrahigh strength steel. The influences of deformation parameter on high-temperature tensile behaviors, fracture characteristics and deformation mechanisms are analyzed. Moreover, Arrhenius-type phenomenological (AP) model developed by the regression method or the Nelder-Mead (NM) simplex method, and the artificial-neural-network (ANN) model developed by combining genetic algorithm (GA) and back propagation learning algorithm (BP) are proposed, respectively. The results show that the high-temperature tensile behavior of the studied steel exhibits the typical work hardening and dynamic recovery characteristics. The necking capability increases with the strain rate decreasing and tensile temperature increasing. However, the large deep dimples dramatically deteriorate the loading capability during the localized necking, leading to the poor elongation to fracture at low strain rate. Both for the modeling and verifying data, the AP model developed by the NM simplex method shows the relatively high relative coefficient (higher than 0.9963), low average absolute relative error (lower than 1.6692%) and narrow error band (controlled in ±6.8MPa), compared with the AP model developed by the regression method and the GA-BP ANN model.</description><subject>Back propagation networks</subject><subject>Constitutive model</subject><subject>Constitutive models</subject><subject>Deformation analysis</subject><subject>Deformation mechanisms</subject><subject>Dimpling</subject><subject>Elongation</subject><subject>Fracture mechanism</subject><subject>Genetic algorithms</subject><subject>High strength steels</subject><subject>High temperature</subject><subject>High-temperature tensile behavior</subject><subject>Machine learning</subject><subject>Necking</subject><subject>Neural networks</subject><subject>Parameters</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Simplex method</subject><subject>Strain rate</subject><subject>Ultrahigh strength steel</subject><subject>Work hardening</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLguvoHPAU8d81Hm6bgRRa_YMGL3oSQptPdlLZZk3TBf29KPTuX-eC9NzMPoVtKNpRQcd9thgB6wwhLg5zkFT1DKypLnuUVF-doRSpGs4JU_BJdhdARQhKsWKGvV7s_ZBGGI3gdJw84whhsD9gctNcmgrchWhOwHhts3JiaOEV7Ajy4BvqAXYunPnp9SEI4RA_jPs4FQH-NLlrdB7j5y2v0-fz0sX3Ndu8vb9vHXWY4kzHTum4LkzMiRakLUZLaQNNUAE0OmtVa8BRFyyooSUFlLRJBSpFQFeW0Kfga3S26R---JwhRdW7yY1qpWPpfCkpFnlBsQRnvQvDQqqO3g_Y_ihI1u6g6NbuoZhfV4mIiPSyk9CqcLHgVjIUxHWg9mKgaZ_-j_wKKlX1H</recordid><startdate>20210128</startdate><enddate>20210128</enddate><creator>Wen, DongXu</creator><creator>Yue, TianYu</creator><creator>Xiong, YiBo</creator><creator>Wang, Kang</creator><creator>Wang, JiaKai</creator><creator>Zheng, ZhiZhen</creator><creator>Li, JianJun</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20210128</creationdate><title>High-temperature tensile characteristics and constitutive models of ultrahigh strength steel</title><author>Wen, DongXu ; Yue, TianYu ; Xiong, YiBo ; Wang, Kang ; Wang, JiaKai ; Zheng, ZhiZhen ; Li, JianJun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-aabf5c420867a5670bcedd9eed4ea2ba633335f29e70518b6aab886bce9131d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Back propagation networks</topic><topic>Constitutive model</topic><topic>Constitutive models</topic><topic>Deformation analysis</topic><topic>Deformation mechanisms</topic><topic>Dimpling</topic><topic>Elongation</topic><topic>Fracture mechanism</topic><topic>Genetic algorithms</topic><topic>High strength steels</topic><topic>High temperature</topic><topic>High-temperature tensile behavior</topic><topic>Machine learning</topic><topic>Necking</topic><topic>Neural networks</topic><topic>Parameters</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Simplex method</topic><topic>Strain rate</topic><topic>Ultrahigh strength steel</topic><topic>Work hardening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen, DongXu</creatorcontrib><creatorcontrib>Yue, TianYu</creatorcontrib><creatorcontrib>Xiong, YiBo</creatorcontrib><creatorcontrib>Wang, Kang</creatorcontrib><creatorcontrib>Wang, JiaKai</creatorcontrib><creatorcontrib>Zheng, ZhiZhen</creatorcontrib><creatorcontrib>Li, JianJun</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wen, DongXu</au><au>Yue, TianYu</au><au>Xiong, YiBo</au><au>Wang, Kang</au><au>Wang, JiaKai</au><au>Zheng, ZhiZhen</au><au>Li, JianJun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-temperature tensile characteristics and constitutive models of ultrahigh strength steel</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2021-01-28</date><risdate>2021</risdate><volume>803</volume><spage>140491</spage><pages>140491-</pages><artnum>140491</artnum><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>In this investigation, the isothermal tensile experiments over wide ranges of deformation parameters (strain rate and tensile temperature) are conducted for studying the high-temperature tensile behaviors of an ultrahigh strength steel. The influences of deformation parameter on high-temperature tensile behaviors, fracture characteristics and deformation mechanisms are analyzed. Moreover, Arrhenius-type phenomenological (AP) model developed by the regression method or the Nelder-Mead (NM) simplex method, and the artificial-neural-network (ANN) model developed by combining genetic algorithm (GA) and back propagation learning algorithm (BP) are proposed, respectively. The results show that the high-temperature tensile behavior of the studied steel exhibits the typical work hardening and dynamic recovery characteristics. The necking capability increases with the strain rate decreasing and tensile temperature increasing. However, the large deep dimples dramatically deteriorate the loading capability during the localized necking, leading to the poor elongation to fracture at low strain rate. Both for the modeling and verifying data, the AP model developed by the NM simplex method shows the relatively high relative coefficient (higher than 0.9963), low average absolute relative error (lower than 1.6692%) and narrow error band (controlled in ±6.8MPa), compared with the AP model developed by the regression method and the GA-BP ANN model.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2020.140491</doi></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2021-01, Vol.803, p.140491, Article 140491
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_journals_2493861164
source Elsevier ScienceDirect Journals Complete
subjects Back propagation networks
Constitutive model
Constitutive models
Deformation analysis
Deformation mechanisms
Dimpling
Elongation
Fracture mechanism
Genetic algorithms
High strength steels
High temperature
High-temperature tensile behavior
Machine learning
Necking
Neural networks
Parameters
Regression analysis
Regression models
Simplex method
Strain rate
Ultrahigh strength steel
Work hardening
title High-temperature tensile characteristics and constitutive models of ultrahigh strength steel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A55%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-temperature%20tensile%20characteristics%20and%20constitutive%20models%20of%20ultrahigh%20strength%20steel&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Wen,%20DongXu&rft.date=2021-01-28&rft.volume=803&rft.spage=140491&rft.pages=140491-&rft.artnum=140491&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2020.140491&rft_dat=%3Cproquest_cross%3E2493861164%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2493861164&rft_id=info:pmid/&rft_els_id=S0921509320315549&rfr_iscdi=true