Effect of Number of Input Signals on Chaos Synchronization by Applying Zero-dispersion Nonlinear Resonance

In this paper, we report a circuit experiment that demonstrates the effect of the number of input signals on chaos synchronization by applying zero-dispersion nonlinear resonance (ZDNR). The input signals are obtained by generic input–output analysis and the ZDNR theory. In this way, the evolution o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and materials 2021-02, Vol.33 (2), p.585
Hauptverfasser: Lu, Ming-Chi, Tsai, Feng-Wei, Chan, Chen-An, Zhong, Yan-Lin, Liu, Chia-Ju, Tsai, Tsung-Lun, Ko, Jing-Yuan, Ho, Ming-Chung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 585
container_title Sensors and materials
container_volume 33
creator Lu, Ming-Chi
Tsai, Feng-Wei
Chan, Chen-An
Zhong, Yan-Lin
Liu, Chia-Ju
Tsai, Tsung-Lun
Ko, Jing-Yuan
Ho, Ming-Chung
description In this paper, we report a circuit experiment that demonstrates the effect of the number of input signals on chaos synchronization by applying zero-dispersion nonlinear resonance (ZDNR). The input signals are obtained by generic input–output analysis and the ZDNR theory. In this way, the evolution of chaos synchronization can be observed from our experimental results, that is, two chaotic systems change from phase locking to complete synchronization when the number of input signals of ZDNR increases from one to three. Additionally, a circuit implemented utilizing the ZDNR technique can be applied to sensor circuits to detect specific desired signals.
doi_str_mv 10.18494/SAM.2021.2487
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2493860022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2493860022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-7dbfba3ba697934f4b6b75e9a981c0c431c45ed2ba76991a018d4dd1ccc0c9b3</originalsourceid><addsrcrecordid>eNotkLtPwzAYxD2ARFW6MltiTvArD49VVR5SKRLtxGLZjt26au1gJ0P460ko03f67nTS_QB4wCjHNePsabd8zwkiOCesrm7ADHHMMsZpcQcWKZ0QQrguUEnKGTitrTW6g8HCbX9RJk7qzbd9B3fu4OU5weDh6ihDgrvB62MM3v3Izo1fNcBl254H5w_wy8SQNS61JqbJ2wZ_dt7ICD9NCl56be7BrR37zOL_zsH-eb1fvWabj5e31XKTaUrqLqsaZZWkSpa84pRZpkpVFYZLXmONNKNYs8I0RMmq5BzLcUvDmgZrPbpc0Tl4vNa2MXz3JnXiFPo4LRFkZFCXCBEypvJrSseQUjRWtNFdZBwERuKPohgpiomimCjSX0JqaEY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493860022</pqid></control><display><type>article</type><title>Effect of Number of Input Signals on Chaos Synchronization by Applying Zero-dispersion Nonlinear Resonance</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Lu, Ming-Chi ; Tsai, Feng-Wei ; Chan, Chen-An ; Zhong, Yan-Lin ; Liu, Chia-Ju ; Tsai, Tsung-Lun ; Ko, Jing-Yuan ; Ho, Ming-Chung</creator><creatorcontrib>Lu, Ming-Chi ; Tsai, Feng-Wei ; Chan, Chen-An ; Zhong, Yan-Lin ; Liu, Chia-Ju ; Tsai, Tsung-Lun ; Ko, Jing-Yuan ; Ho, Ming-Chung</creatorcontrib><description>In this paper, we report a circuit experiment that demonstrates the effect of the number of input signals on chaos synchronization by applying zero-dispersion nonlinear resonance (ZDNR). The input signals are obtained by generic input–output analysis and the ZDNR theory. In this way, the evolution of chaos synchronization can be observed from our experimental results, that is, two chaotic systems change from phase locking to complete synchronization when the number of input signals of ZDNR increases from one to three. Additionally, a circuit implemented utilizing the ZDNR technique can be applied to sensor circuits to detect specific desired signals.</description><identifier>ISSN: 0914-4935</identifier><identifier>DOI: 10.18494/SAM.2021.2487</identifier><language>eng</language><publisher>Tokyo: MYU Scientific Publishing Division</publisher><subject>Chaos theory ; Circuits ; Dispersion ; Locking ; Resonance ; Synchronism</subject><ispartof>Sensors and materials, 2021-02, Vol.33 (2), p.585</ispartof><rights>Copyright MYU Scientific Publishing Division 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Lu, Ming-Chi</creatorcontrib><creatorcontrib>Tsai, Feng-Wei</creatorcontrib><creatorcontrib>Chan, Chen-An</creatorcontrib><creatorcontrib>Zhong, Yan-Lin</creatorcontrib><creatorcontrib>Liu, Chia-Ju</creatorcontrib><creatorcontrib>Tsai, Tsung-Lun</creatorcontrib><creatorcontrib>Ko, Jing-Yuan</creatorcontrib><creatorcontrib>Ho, Ming-Chung</creatorcontrib><title>Effect of Number of Input Signals on Chaos Synchronization by Applying Zero-dispersion Nonlinear Resonance</title><title>Sensors and materials</title><description>In this paper, we report a circuit experiment that demonstrates the effect of the number of input signals on chaos synchronization by applying zero-dispersion nonlinear resonance (ZDNR). The input signals are obtained by generic input–output analysis and the ZDNR theory. In this way, the evolution of chaos synchronization can be observed from our experimental results, that is, two chaotic systems change from phase locking to complete synchronization when the number of input signals of ZDNR increases from one to three. Additionally, a circuit implemented utilizing the ZDNR technique can be applied to sensor circuits to detect specific desired signals.</description><subject>Chaos theory</subject><subject>Circuits</subject><subject>Dispersion</subject><subject>Locking</subject><subject>Resonance</subject><subject>Synchronism</subject><issn>0914-4935</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotkLtPwzAYxD2ARFW6MltiTvArD49VVR5SKRLtxGLZjt26au1gJ0P460ko03f67nTS_QB4wCjHNePsabd8zwkiOCesrm7ADHHMMsZpcQcWKZ0QQrguUEnKGTitrTW6g8HCbX9RJk7qzbd9B3fu4OU5weDh6ihDgrvB62MM3v3Izo1fNcBl254H5w_wy8SQNS61JqbJ2wZ_dt7ICD9NCl56be7BrR37zOL_zsH-eb1fvWabj5e31XKTaUrqLqsaZZWkSpa84pRZpkpVFYZLXmONNKNYs8I0RMmq5BzLcUvDmgZrPbpc0Tl4vNa2MXz3JnXiFPo4LRFkZFCXCBEypvJrSseQUjRWtNFdZBwERuKPohgpiomimCjSX0JqaEY</recordid><startdate>20210216</startdate><enddate>20210216</enddate><creator>Lu, Ming-Chi</creator><creator>Tsai, Feng-Wei</creator><creator>Chan, Chen-An</creator><creator>Zhong, Yan-Lin</creator><creator>Liu, Chia-Ju</creator><creator>Tsai, Tsung-Lun</creator><creator>Ko, Jing-Yuan</creator><creator>Ho, Ming-Chung</creator><general>MYU Scientific Publishing Division</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20210216</creationdate><title>Effect of Number of Input Signals on Chaos Synchronization by Applying Zero-dispersion Nonlinear Resonance</title><author>Lu, Ming-Chi ; Tsai, Feng-Wei ; Chan, Chen-An ; Zhong, Yan-Lin ; Liu, Chia-Ju ; Tsai, Tsung-Lun ; Ko, Jing-Yuan ; Ho, Ming-Chung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-7dbfba3ba697934f4b6b75e9a981c0c431c45ed2ba76991a018d4dd1ccc0c9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chaos theory</topic><topic>Circuits</topic><topic>Dispersion</topic><topic>Locking</topic><topic>Resonance</topic><topic>Synchronism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Ming-Chi</creatorcontrib><creatorcontrib>Tsai, Feng-Wei</creatorcontrib><creatorcontrib>Chan, Chen-An</creatorcontrib><creatorcontrib>Zhong, Yan-Lin</creatorcontrib><creatorcontrib>Liu, Chia-Ju</creatorcontrib><creatorcontrib>Tsai, Tsung-Lun</creatorcontrib><creatorcontrib>Ko, Jing-Yuan</creatorcontrib><creatorcontrib>Ho, Ming-Chung</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Ming-Chi</au><au>Tsai, Feng-Wei</au><au>Chan, Chen-An</au><au>Zhong, Yan-Lin</au><au>Liu, Chia-Ju</au><au>Tsai, Tsung-Lun</au><au>Ko, Jing-Yuan</au><au>Ho, Ming-Chung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Number of Input Signals on Chaos Synchronization by Applying Zero-dispersion Nonlinear Resonance</atitle><jtitle>Sensors and materials</jtitle><date>2021-02-16</date><risdate>2021</risdate><volume>33</volume><issue>2</issue><spage>585</spage><pages>585-</pages><issn>0914-4935</issn><abstract>In this paper, we report a circuit experiment that demonstrates the effect of the number of input signals on chaos synchronization by applying zero-dispersion nonlinear resonance (ZDNR). The input signals are obtained by generic input–output analysis and the ZDNR theory. In this way, the evolution of chaos synchronization can be observed from our experimental results, that is, two chaotic systems change from phase locking to complete synchronization when the number of input signals of ZDNR increases from one to three. Additionally, a circuit implemented utilizing the ZDNR technique can be applied to sensor circuits to detect specific desired signals.</abstract><cop>Tokyo</cop><pub>MYU Scientific Publishing Division</pub><doi>10.18494/SAM.2021.2487</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0914-4935
ispartof Sensors and materials, 2021-02, Vol.33 (2), p.585
issn 0914-4935
language eng
recordid cdi_proquest_journals_2493860022
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Chaos theory
Circuits
Dispersion
Locking
Resonance
Synchronism
title Effect of Number of Input Signals on Chaos Synchronization by Applying Zero-dispersion Nonlinear Resonance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T14%3A43%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Number%20of%20Input%20Signals%20on%20Chaos%20Synchronization%20by%20Applying%20Zero-dispersion%20Nonlinear%20Resonance&rft.jtitle=Sensors%20and%20materials&rft.au=Lu,%20Ming-Chi&rft.date=2021-02-16&rft.volume=33&rft.issue=2&rft.spage=585&rft.pages=585-&rft.issn=0914-4935&rft_id=info:doi/10.18494/SAM.2021.2487&rft_dat=%3Cproquest_cross%3E2493860022%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2493860022&rft_id=info:pmid/&rfr_iscdi=true