Bound state solutions of the generalized shifted Hulthén potential

In this study, we obtain an approximate solution of the Schrödinger equation in arbitrary dimensions for the generalized shifted Hulthén potential model within the framework of the Nikiforov–Uvarov method. The bound state energy eigenvalues were computed, and the corresponding eigenfunction was also...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indian journal of physics 2021-03, Vol.95 (3), p.471-480
Hauptverfasser: Edet, C. O., Okoi, P. O., Yusuf, A. S., Ushie, P. O., Amadi, P. O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 480
container_issue 3
container_start_page 471
container_title Indian journal of physics
container_volume 95
creator Edet, C. O.
Okoi, P. O.
Yusuf, A. S.
Ushie, P. O.
Amadi, P. O.
description In this study, we obtain an approximate solution of the Schrödinger equation in arbitrary dimensions for the generalized shifted Hulthén potential model within the framework of the Nikiforov–Uvarov method. The bound state energy eigenvalues were computed, and the corresponding eigenfunction was also obtained. It is found that the numerical eigenvalues were in good agreement for all three approximations scheme used. Special cases were considered when the potential parameters were altered, resulting in Hulthén potential and Woods–Saxon Potential, respectively. Their energy eigenvalues expressions agreed with the already existing literature. A straightforward extension to the s-wave case for Hulthén potential and Woods–Saxon potential cases is also presented.
doi_str_mv 10.1007/s12648-019-01650-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2493852395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2493852395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b94d36522943265e33fd426620decac72502c6bd8bdbfae70563ee6aee4a45f13</originalsourceid><addsrcrecordid>eNp9kE1OwzAQRi0EEqVwAVaRWAf8n3gJFbRIldjA2nKScZsq2MV2FnAjzsHFMA0SOxajbxbvm5EeQpcEXxOMq5tIqOR1iYnKIwUu8RGaYVXxUtVcHB92VhIu6lN0FuMOY6lIJWZocedH1xUxmQRF9MOYeu9i4W2RtlBswEEwQ_8BGdn2NuVcjUPafn26Yu8TuNSb4RydWDNEuPjNOXp5uH9erMr10_JxcbsuW0ZUKhvFOyYFpYozKgUwZjtOpaS4g9a0FRWYtrLp6qZrrIEKC8kApAHghgtL2BxdTXf3wb-NEJPe-TG4_FJTrlgtKFMiU3Si2uBjDGD1PvSvJrxrgvWPLD3J0lmWPsjSOJfYVIoZdhsIf6f_aX0DsHNtlg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493852395</pqid></control><display><type>article</type><title>Bound state solutions of the generalized shifted Hulthén potential</title><source>SpringerNature Journals</source><creator>Edet, C. O. ; Okoi, P. O. ; Yusuf, A. S. ; Ushie, P. O. ; Amadi, P. O.</creator><creatorcontrib>Edet, C. O. ; Okoi, P. O. ; Yusuf, A. S. ; Ushie, P. O. ; Amadi, P. O.</creatorcontrib><description>In this study, we obtain an approximate solution of the Schrödinger equation in arbitrary dimensions for the generalized shifted Hulthén potential model within the framework of the Nikiforov–Uvarov method. The bound state energy eigenvalues were computed, and the corresponding eigenfunction was also obtained. It is found that the numerical eigenvalues were in good agreement for all three approximations scheme used. Special cases were considered when the potential parameters were altered, resulting in Hulthén potential and Woods–Saxon Potential, respectively. Their energy eigenvalues expressions agreed with the already existing literature. A straightforward extension to the s-wave case for Hulthén potential and Woods–Saxon potential cases is also presented.</description><identifier>ISSN: 0973-1458</identifier><identifier>EISSN: 0974-9845</identifier><identifier>DOI: 10.1007/s12648-019-01650-0</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Astrophysics and Astroparticles ; Eigenvalues ; Eigenvectors ; Original Paper ; Physics ; Physics and Astronomy ; Schrodinger equation</subject><ispartof>Indian journal of physics, 2021-03, Vol.95 (3), p.471-480</ispartof><rights>Indian Association for the Cultivation of Science 2020</rights><rights>Indian Association for the Cultivation of Science 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b94d36522943265e33fd426620decac72502c6bd8bdbfae70563ee6aee4a45f13</citedby><cites>FETCH-LOGICAL-c319t-b94d36522943265e33fd426620decac72502c6bd8bdbfae70563ee6aee4a45f13</cites><orcidid>0000-0001-7762-731X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12648-019-01650-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12648-019-01650-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Edet, C. O.</creatorcontrib><creatorcontrib>Okoi, P. O.</creatorcontrib><creatorcontrib>Yusuf, A. S.</creatorcontrib><creatorcontrib>Ushie, P. O.</creatorcontrib><creatorcontrib>Amadi, P. O.</creatorcontrib><title>Bound state solutions of the generalized shifted Hulthén potential</title><title>Indian journal of physics</title><addtitle>Indian J Phys</addtitle><description>In this study, we obtain an approximate solution of the Schrödinger equation in arbitrary dimensions for the generalized shifted Hulthén potential model within the framework of the Nikiforov–Uvarov method. The bound state energy eigenvalues were computed, and the corresponding eigenfunction was also obtained. It is found that the numerical eigenvalues were in good agreement for all three approximations scheme used. Special cases were considered when the potential parameters were altered, resulting in Hulthén potential and Woods–Saxon Potential, respectively. Their energy eigenvalues expressions agreed with the already existing literature. A straightforward extension to the s-wave case for Hulthén potential and Woods–Saxon potential cases is also presented.</description><subject>Astrophysics and Astroparticles</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Schrodinger equation</subject><issn>0973-1458</issn><issn>0974-9845</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQRi0EEqVwAVaRWAf8n3gJFbRIldjA2nKScZsq2MV2FnAjzsHFMA0SOxajbxbvm5EeQpcEXxOMq5tIqOR1iYnKIwUu8RGaYVXxUtVcHB92VhIu6lN0FuMOY6lIJWZocedH1xUxmQRF9MOYeu9i4W2RtlBswEEwQ_8BGdn2NuVcjUPafn26Yu8TuNSb4RydWDNEuPjNOXp5uH9erMr10_JxcbsuW0ZUKhvFOyYFpYozKgUwZjtOpaS4g9a0FRWYtrLp6qZrrIEKC8kApAHghgtL2BxdTXf3wb-NEJPe-TG4_FJTrlgtKFMiU3Si2uBjDGD1PvSvJrxrgvWPLD3J0lmWPsjSOJfYVIoZdhsIf6f_aX0DsHNtlg</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Edet, C. O.</creator><creator>Okoi, P. O.</creator><creator>Yusuf, A. S.</creator><creator>Ushie, P. O.</creator><creator>Amadi, P. O.</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7762-731X</orcidid></search><sort><creationdate>20210301</creationdate><title>Bound state solutions of the generalized shifted Hulthén potential</title><author>Edet, C. O. ; Okoi, P. O. ; Yusuf, A. S. ; Ushie, P. O. ; Amadi, P. O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b94d36522943265e33fd426620decac72502c6bd8bdbfae70563ee6aee4a45f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astrophysics and Astroparticles</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Schrodinger equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Edet, C. O.</creatorcontrib><creatorcontrib>Okoi, P. O.</creatorcontrib><creatorcontrib>Yusuf, A. S.</creatorcontrib><creatorcontrib>Ushie, P. O.</creatorcontrib><creatorcontrib>Amadi, P. O.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Indian journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Edet, C. O.</au><au>Okoi, P. O.</au><au>Yusuf, A. S.</au><au>Ushie, P. O.</au><au>Amadi, P. O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bound state solutions of the generalized shifted Hulthén potential</atitle><jtitle>Indian journal of physics</jtitle><stitle>Indian J Phys</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>95</volume><issue>3</issue><spage>471</spage><epage>480</epage><pages>471-480</pages><issn>0973-1458</issn><eissn>0974-9845</eissn><abstract>In this study, we obtain an approximate solution of the Schrödinger equation in arbitrary dimensions for the generalized shifted Hulthén potential model within the framework of the Nikiforov–Uvarov method. The bound state energy eigenvalues were computed, and the corresponding eigenfunction was also obtained. It is found that the numerical eigenvalues were in good agreement for all three approximations scheme used. Special cases were considered when the potential parameters were altered, resulting in Hulthén potential and Woods–Saxon Potential, respectively. Their energy eigenvalues expressions agreed with the already existing literature. A straightforward extension to the s-wave case for Hulthén potential and Woods–Saxon potential cases is also presented.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12648-019-01650-0</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7762-731X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0973-1458
ispartof Indian journal of physics, 2021-03, Vol.95 (3), p.471-480
issn 0973-1458
0974-9845
language eng
recordid cdi_proquest_journals_2493852395
source SpringerNature Journals
subjects Astrophysics and Astroparticles
Eigenvalues
Eigenvectors
Original Paper
Physics
Physics and Astronomy
Schrodinger equation
title Bound state solutions of the generalized shifted Hulthén potential
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T03%3A39%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bound%20state%20solutions%20of%20the%20generalized%20shifted%20Hulth%C3%A9n%20potential&rft.jtitle=Indian%20journal%20of%20physics&rft.au=Edet,%20C.%20O.&rft.date=2021-03-01&rft.volume=95&rft.issue=3&rft.spage=471&rft.epage=480&rft.pages=471-480&rft.issn=0973-1458&rft.eissn=0974-9845&rft_id=info:doi/10.1007/s12648-019-01650-0&rft_dat=%3Cproquest_cross%3E2493852395%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2493852395&rft_id=info:pmid/&rfr_iscdi=true