Bound state solutions of the generalized shifted Hulthén potential
In this study, we obtain an approximate solution of the Schrödinger equation in arbitrary dimensions for the generalized shifted Hulthén potential model within the framework of the Nikiforov–Uvarov method. The bound state energy eigenvalues were computed, and the corresponding eigenfunction was also...
Gespeichert in:
Veröffentlicht in: | Indian journal of physics 2021-03, Vol.95 (3), p.471-480 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 480 |
---|---|
container_issue | 3 |
container_start_page | 471 |
container_title | Indian journal of physics |
container_volume | 95 |
creator | Edet, C. O. Okoi, P. O. Yusuf, A. S. Ushie, P. O. Amadi, P. O. |
description | In this study, we obtain an approximate solution of the Schrödinger equation in arbitrary dimensions for the generalized shifted Hulthén potential model within the framework of the Nikiforov–Uvarov method. The bound state energy eigenvalues were computed, and the corresponding eigenfunction was also obtained. It is found that the numerical eigenvalues were in good agreement for all three approximations scheme used. Special cases were considered when the potential parameters were altered, resulting in Hulthén potential and Woods–Saxon Potential, respectively. Their energy eigenvalues expressions agreed with the already existing literature. A straightforward extension to the s-wave case for Hulthén potential and Woods–Saxon potential cases is also presented. |
doi_str_mv | 10.1007/s12648-019-01650-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2493852395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2493852395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b94d36522943265e33fd426620decac72502c6bd8bdbfae70563ee6aee4a45f13</originalsourceid><addsrcrecordid>eNp9kE1OwzAQRi0EEqVwAVaRWAf8n3gJFbRIldjA2nKScZsq2MV2FnAjzsHFMA0SOxajbxbvm5EeQpcEXxOMq5tIqOR1iYnKIwUu8RGaYVXxUtVcHB92VhIu6lN0FuMOY6lIJWZocedH1xUxmQRF9MOYeu9i4W2RtlBswEEwQ_8BGdn2NuVcjUPafn26Yu8TuNSb4RydWDNEuPjNOXp5uH9erMr10_JxcbsuW0ZUKhvFOyYFpYozKgUwZjtOpaS4g9a0FRWYtrLp6qZrrIEKC8kApAHghgtL2BxdTXf3wb-NEJPe-TG4_FJTrlgtKFMiU3Si2uBjDGD1PvSvJrxrgvWPLD3J0lmWPsjSOJfYVIoZdhsIf6f_aX0DsHNtlg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493852395</pqid></control><display><type>article</type><title>Bound state solutions of the generalized shifted Hulthén potential</title><source>SpringerNature Journals</source><creator>Edet, C. O. ; Okoi, P. O. ; Yusuf, A. S. ; Ushie, P. O. ; Amadi, P. O.</creator><creatorcontrib>Edet, C. O. ; Okoi, P. O. ; Yusuf, A. S. ; Ushie, P. O. ; Amadi, P. O.</creatorcontrib><description>In this study, we obtain an approximate solution of the Schrödinger equation in arbitrary dimensions for the generalized shifted Hulthén potential model within the framework of the Nikiforov–Uvarov method. The bound state energy eigenvalues were computed, and the corresponding eigenfunction was also obtained. It is found that the numerical eigenvalues were in good agreement for all three approximations scheme used. Special cases were considered when the potential parameters were altered, resulting in Hulthén potential and Woods–Saxon Potential, respectively. Their energy eigenvalues expressions agreed with the already existing literature. A straightforward extension to the s-wave case for Hulthén potential and Woods–Saxon potential cases is also presented.</description><identifier>ISSN: 0973-1458</identifier><identifier>EISSN: 0974-9845</identifier><identifier>DOI: 10.1007/s12648-019-01650-0</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Astrophysics and Astroparticles ; Eigenvalues ; Eigenvectors ; Original Paper ; Physics ; Physics and Astronomy ; Schrodinger equation</subject><ispartof>Indian journal of physics, 2021-03, Vol.95 (3), p.471-480</ispartof><rights>Indian Association for the Cultivation of Science 2020</rights><rights>Indian Association for the Cultivation of Science 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b94d36522943265e33fd426620decac72502c6bd8bdbfae70563ee6aee4a45f13</citedby><cites>FETCH-LOGICAL-c319t-b94d36522943265e33fd426620decac72502c6bd8bdbfae70563ee6aee4a45f13</cites><orcidid>0000-0001-7762-731X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12648-019-01650-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12648-019-01650-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Edet, C. O.</creatorcontrib><creatorcontrib>Okoi, P. O.</creatorcontrib><creatorcontrib>Yusuf, A. S.</creatorcontrib><creatorcontrib>Ushie, P. O.</creatorcontrib><creatorcontrib>Amadi, P. O.</creatorcontrib><title>Bound state solutions of the generalized shifted Hulthén potential</title><title>Indian journal of physics</title><addtitle>Indian J Phys</addtitle><description>In this study, we obtain an approximate solution of the Schrödinger equation in arbitrary dimensions for the generalized shifted Hulthén potential model within the framework of the Nikiforov–Uvarov method. The bound state energy eigenvalues were computed, and the corresponding eigenfunction was also obtained. It is found that the numerical eigenvalues were in good agreement for all three approximations scheme used. Special cases were considered when the potential parameters were altered, resulting in Hulthén potential and Woods–Saxon Potential, respectively. Their energy eigenvalues expressions agreed with the already existing literature. A straightforward extension to the s-wave case for Hulthén potential and Woods–Saxon potential cases is also presented.</description><subject>Astrophysics and Astroparticles</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Schrodinger equation</subject><issn>0973-1458</issn><issn>0974-9845</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQRi0EEqVwAVaRWAf8n3gJFbRIldjA2nKScZsq2MV2FnAjzsHFMA0SOxajbxbvm5EeQpcEXxOMq5tIqOR1iYnKIwUu8RGaYVXxUtVcHB92VhIu6lN0FuMOY6lIJWZocedH1xUxmQRF9MOYeu9i4W2RtlBswEEwQ_8BGdn2NuVcjUPafn26Yu8TuNSb4RydWDNEuPjNOXp5uH9erMr10_JxcbsuW0ZUKhvFOyYFpYozKgUwZjtOpaS4g9a0FRWYtrLp6qZrrIEKC8kApAHghgtL2BxdTXf3wb-NEJPe-TG4_FJTrlgtKFMiU3Si2uBjDGD1PvSvJrxrgvWPLD3J0lmWPsjSOJfYVIoZdhsIf6f_aX0DsHNtlg</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Edet, C. O.</creator><creator>Okoi, P. O.</creator><creator>Yusuf, A. S.</creator><creator>Ushie, P. O.</creator><creator>Amadi, P. O.</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7762-731X</orcidid></search><sort><creationdate>20210301</creationdate><title>Bound state solutions of the generalized shifted Hulthén potential</title><author>Edet, C. O. ; Okoi, P. O. ; Yusuf, A. S. ; Ushie, P. O. ; Amadi, P. O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b94d36522943265e33fd426620decac72502c6bd8bdbfae70563ee6aee4a45f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astrophysics and Astroparticles</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Schrodinger equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Edet, C. O.</creatorcontrib><creatorcontrib>Okoi, P. O.</creatorcontrib><creatorcontrib>Yusuf, A. S.</creatorcontrib><creatorcontrib>Ushie, P. O.</creatorcontrib><creatorcontrib>Amadi, P. O.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Indian journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Edet, C. O.</au><au>Okoi, P. O.</au><au>Yusuf, A. S.</au><au>Ushie, P. O.</au><au>Amadi, P. O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bound state solutions of the generalized shifted Hulthén potential</atitle><jtitle>Indian journal of physics</jtitle><stitle>Indian J Phys</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>95</volume><issue>3</issue><spage>471</spage><epage>480</epage><pages>471-480</pages><issn>0973-1458</issn><eissn>0974-9845</eissn><abstract>In this study, we obtain an approximate solution of the Schrödinger equation in arbitrary dimensions for the generalized shifted Hulthén potential model within the framework of the Nikiforov–Uvarov method. The bound state energy eigenvalues were computed, and the corresponding eigenfunction was also obtained. It is found that the numerical eigenvalues were in good agreement for all three approximations scheme used. Special cases were considered when the potential parameters were altered, resulting in Hulthén potential and Woods–Saxon Potential, respectively. Their energy eigenvalues expressions agreed with the already existing literature. A straightforward extension to the s-wave case for Hulthén potential and Woods–Saxon potential cases is also presented.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12648-019-01650-0</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7762-731X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0973-1458 |
ispartof | Indian journal of physics, 2021-03, Vol.95 (3), p.471-480 |
issn | 0973-1458 0974-9845 |
language | eng |
recordid | cdi_proquest_journals_2493852395 |
source | SpringerNature Journals |
subjects | Astrophysics and Astroparticles Eigenvalues Eigenvectors Original Paper Physics Physics and Astronomy Schrodinger equation |
title | Bound state solutions of the generalized shifted Hulthén potential |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T03%3A39%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bound%20state%20solutions%20of%20the%20generalized%20shifted%20Hulth%C3%A9n%20potential&rft.jtitle=Indian%20journal%20of%20physics&rft.au=Edet,%20C.%20O.&rft.date=2021-03-01&rft.volume=95&rft.issue=3&rft.spage=471&rft.epage=480&rft.pages=471-480&rft.issn=0973-1458&rft.eissn=0974-9845&rft_id=info:doi/10.1007/s12648-019-01650-0&rft_dat=%3Cproquest_cross%3E2493852395%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2493852395&rft_id=info:pmid/&rfr_iscdi=true |