Two Hybrid Spectral Methods With Inertial Effect for Solving System of Nonlinear Monotone Equations With Application in Robotics

In this work, motivated by the effect of inertial step in accelerating algorithms for solving nonlinear problems such as equilibrium problems, we propose two hybrid spectral algorithms with inertial effect for solving system of nonlinear equations with convex constraints. The search directions in th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.30918-30928
Hauptverfasser: Aji, Sani, Kumam, Poom, Awwal, Aliyu Muhammed, Yahaya, Mahmoud Muhammad, Kumam, Wiyada
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 30928
container_issue
container_start_page 30918
container_title IEEE access
container_volume 9
creator Aji, Sani
Kumam, Poom
Awwal, Aliyu Muhammed
Yahaya, Mahmoud Muhammad
Kumam, Wiyada
description In this work, motivated by the effect of inertial step in accelerating algorithms for solving nonlinear problems such as equilibrium problems, we propose two hybrid spectral algorithms with inertial effect for solving system of nonlinear equations with convex constraints. The search directions in these algorithms use the convex combination of the modified Barzilai and Borwein spectral parameters (IMA journal of numerical analysis, vol. 8, no. 1, pp. 141-148, 1988) and their geometric mean proposed by Dai et al. (In Numerical Analysis and Optimization, pp. 59-75, Springer, 2015). The incorporation of the inertial-step aids the proposed algorithms in producing more efficient results in comparison with three existing spectral algorithms. Under the assumption that the function under consideration is monotone and satisfies Lipschitz continuity, we prove the global convergence of the proposed algorithms. In addition, we also show the application of the proposed algorithms in motion control of two-joint planar robotic manipulator.
doi_str_mv 10.1109/ACCESS.2021.3056567
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2493601158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9344698</ieee_id><doaj_id>oai_doaj_org_article_78bdaa4e35ce417fb4370b7a7469cbae</doaj_id><sourcerecordid>2493601158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-316ad43f1294b8bde45a8f9e2c3e11f0920948885988ec1095363cdcea9df8853</originalsourceid><addsrcrecordid>eNpNkUFP3DAQhaOqlYoov4CLJc67tWMnsY-r1VJWgiI1II6W44zBq-AJjrdob_3pNWSF8MXW87xvPH5Fcc7okjGqfq7W603bLktasiWnVV3VzZfipGS1WvCK118_nb8XZ9O0o3nJLFXNSfHv7hXJ1aGLviftCDZFM5AbSE_YT-TBpyeyDRCTz-rGuXxPHEbS4vDXh0fSHqYEzwQd-Y1h8AFMJDcYMGEAsnnZm-QxHDmrcRy8fVeID-QPdpi8nX4U35wZJjg77qfF_eXmbn21uL79tV2vrhdWUJkWnNWmF9yxUolOdj2IykinoLQcGHNUlVQJKWWlpASbvyVPy21vwajeZZmfFtuZ26PZ6TH6ZxMPGo3X7wLGR23ynHYA3WS-MQJ4ZUGwxnWCN7RrTCNqZTsDmXUxs8aIL3uYkt7hPob8fF0KxWvKWCVzFZ-rbMRpiuA-ujKq35LTc3L6LTl9TC67zmeXB4APh-IiN5f8P-yllc8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493601158</pqid></control><display><type>article</type><title>Two Hybrid Spectral Methods With Inertial Effect for Solving System of Nonlinear Monotone Equations With Application in Robotics</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IEEE Xplore Open Access Journals</source><creator>Aji, Sani ; Kumam, Poom ; Awwal, Aliyu Muhammed ; Yahaya, Mahmoud Muhammad ; Kumam, Wiyada</creator><creatorcontrib>Aji, Sani ; Kumam, Poom ; Awwal, Aliyu Muhammed ; Yahaya, Mahmoud Muhammad ; Kumam, Wiyada</creatorcontrib><description>In this work, motivated by the effect of inertial step in accelerating algorithms for solving nonlinear problems such as equilibrium problems, we propose two hybrid spectral algorithms with inertial effect for solving system of nonlinear equations with convex constraints. The search directions in these algorithms use the convex combination of the modified Barzilai and Borwein spectral parameters (IMA journal of numerical analysis, vol. 8, no. 1, pp. 141-148, 1988) and their geometric mean proposed by Dai et al. (In Numerical Analysis and Optimization, pp. 59-75, Springer, 2015). The incorporation of the inertial-step aids the proposed algorithms in producing more efficient results in comparison with three existing spectral algorithms. Under the assumption that the function under consideration is monotone and satisfies Lipschitz continuity, we prove the global convergence of the proposed algorithms. In addition, we also show the application of the proposed algorithms in motion control of two-joint planar robotic manipulator.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3056567</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Barzilai and Borwein parameter ; Convergence ; Gradient methods ; hybrid methods ; Image restoration ; inertial step ; Motion control ; Newton method ; Nonlinear equations ; Numerical analysis ; Optimization ; Parameter modification ; Robot arms ; Robotics ; Spectra ; Spectral methods ; STEM</subject><ispartof>IEEE access, 2021, Vol.9, p.30918-30928</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-316ad43f1294b8bde45a8f9e2c3e11f0920948885988ec1095363cdcea9df8853</citedby><cites>FETCH-LOGICAL-c408t-316ad43f1294b8bde45a8f9e2c3e11f0920948885988ec1095363cdcea9df8853</cites><orcidid>0000-0002-6915-2630 ; 0000-0001-8773-4821 ; 0000-0002-5463-4581 ; 0000-0002-1040-3626 ; 0000-0001-8745-2517</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9344698$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Aji, Sani</creatorcontrib><creatorcontrib>Kumam, Poom</creatorcontrib><creatorcontrib>Awwal, Aliyu Muhammed</creatorcontrib><creatorcontrib>Yahaya, Mahmoud Muhammad</creatorcontrib><creatorcontrib>Kumam, Wiyada</creatorcontrib><title>Two Hybrid Spectral Methods With Inertial Effect for Solving System of Nonlinear Monotone Equations With Application in Robotics</title><title>IEEE access</title><addtitle>Access</addtitle><description>In this work, motivated by the effect of inertial step in accelerating algorithms for solving nonlinear problems such as equilibrium problems, we propose two hybrid spectral algorithms with inertial effect for solving system of nonlinear equations with convex constraints. The search directions in these algorithms use the convex combination of the modified Barzilai and Borwein spectral parameters (IMA journal of numerical analysis, vol. 8, no. 1, pp. 141-148, 1988) and their geometric mean proposed by Dai et al. (In Numerical Analysis and Optimization, pp. 59-75, Springer, 2015). The incorporation of the inertial-step aids the proposed algorithms in producing more efficient results in comparison with three existing spectral algorithms. Under the assumption that the function under consideration is monotone and satisfies Lipschitz continuity, we prove the global convergence of the proposed algorithms. In addition, we also show the application of the proposed algorithms in motion control of two-joint planar robotic manipulator.</description><subject>Algorithms</subject><subject>Barzilai and Borwein parameter</subject><subject>Convergence</subject><subject>Gradient methods</subject><subject>hybrid methods</subject><subject>Image restoration</subject><subject>inertial step</subject><subject>Motion control</subject><subject>Newton method</subject><subject>Nonlinear equations</subject><subject>Numerical analysis</subject><subject>Optimization</subject><subject>Parameter modification</subject><subject>Robot arms</subject><subject>Robotics</subject><subject>Spectra</subject><subject>Spectral methods</subject><subject>STEM</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUFP3DAQhaOqlYoov4CLJc67tWMnsY-r1VJWgiI1II6W44zBq-AJjrdob_3pNWSF8MXW87xvPH5Fcc7okjGqfq7W603bLktasiWnVV3VzZfipGS1WvCK118_nb8XZ9O0o3nJLFXNSfHv7hXJ1aGLviftCDZFM5AbSE_YT-TBpyeyDRCTz-rGuXxPHEbS4vDXh0fSHqYEzwQd-Y1h8AFMJDcYMGEAsnnZm-QxHDmrcRy8fVeID-QPdpi8nX4U35wZJjg77qfF_eXmbn21uL79tV2vrhdWUJkWnNWmF9yxUolOdj2IykinoLQcGHNUlVQJKWWlpASbvyVPy21vwajeZZmfFtuZ26PZ6TH6ZxMPGo3X7wLGR23ynHYA3WS-MQJ4ZUGwxnWCN7RrTCNqZTsDmXUxs8aIL3uYkt7hPob8fF0KxWvKWCVzFZ-rbMRpiuA-ujKq35LTc3L6LTl9TC67zmeXB4APh-IiN5f8P-yllc8</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Aji, Sani</creator><creator>Kumam, Poom</creator><creator>Awwal, Aliyu Muhammed</creator><creator>Yahaya, Mahmoud Muhammad</creator><creator>Kumam, Wiyada</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6915-2630</orcidid><orcidid>https://orcid.org/0000-0001-8773-4821</orcidid><orcidid>https://orcid.org/0000-0002-5463-4581</orcidid><orcidid>https://orcid.org/0000-0002-1040-3626</orcidid><orcidid>https://orcid.org/0000-0001-8745-2517</orcidid></search><sort><creationdate>2021</creationdate><title>Two Hybrid Spectral Methods With Inertial Effect for Solving System of Nonlinear Monotone Equations With Application in Robotics</title><author>Aji, Sani ; Kumam, Poom ; Awwal, Aliyu Muhammed ; Yahaya, Mahmoud Muhammad ; Kumam, Wiyada</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-316ad43f1294b8bde45a8f9e2c3e11f0920948885988ec1095363cdcea9df8853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Barzilai and Borwein parameter</topic><topic>Convergence</topic><topic>Gradient methods</topic><topic>hybrid methods</topic><topic>Image restoration</topic><topic>inertial step</topic><topic>Motion control</topic><topic>Newton method</topic><topic>Nonlinear equations</topic><topic>Numerical analysis</topic><topic>Optimization</topic><topic>Parameter modification</topic><topic>Robot arms</topic><topic>Robotics</topic><topic>Spectra</topic><topic>Spectral methods</topic><topic>STEM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aji, Sani</creatorcontrib><creatorcontrib>Kumam, Poom</creatorcontrib><creatorcontrib>Awwal, Aliyu Muhammed</creatorcontrib><creatorcontrib>Yahaya, Mahmoud Muhammad</creatorcontrib><creatorcontrib>Kumam, Wiyada</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aji, Sani</au><au>Kumam, Poom</au><au>Awwal, Aliyu Muhammed</au><au>Yahaya, Mahmoud Muhammad</au><au>Kumam, Wiyada</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two Hybrid Spectral Methods With Inertial Effect for Solving System of Nonlinear Monotone Equations With Application in Robotics</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>30918</spage><epage>30928</epage><pages>30918-30928</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In this work, motivated by the effect of inertial step in accelerating algorithms for solving nonlinear problems such as equilibrium problems, we propose two hybrid spectral algorithms with inertial effect for solving system of nonlinear equations with convex constraints. The search directions in these algorithms use the convex combination of the modified Barzilai and Borwein spectral parameters (IMA journal of numerical analysis, vol. 8, no. 1, pp. 141-148, 1988) and their geometric mean proposed by Dai et al. (In Numerical Analysis and Optimization, pp. 59-75, Springer, 2015). The incorporation of the inertial-step aids the proposed algorithms in producing more efficient results in comparison with three existing spectral algorithms. Under the assumption that the function under consideration is monotone and satisfies Lipschitz continuity, we prove the global convergence of the proposed algorithms. In addition, we also show the application of the proposed algorithms in motion control of two-joint planar robotic manipulator.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3056567</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6915-2630</orcidid><orcidid>https://orcid.org/0000-0001-8773-4821</orcidid><orcidid>https://orcid.org/0000-0002-5463-4581</orcidid><orcidid>https://orcid.org/0000-0002-1040-3626</orcidid><orcidid>https://orcid.org/0000-0001-8745-2517</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.30918-30928
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2493601158
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; IEEE Xplore Open Access Journals
subjects Algorithms
Barzilai and Borwein parameter
Convergence
Gradient methods
hybrid methods
Image restoration
inertial step
Motion control
Newton method
Nonlinear equations
Numerical analysis
Optimization
Parameter modification
Robot arms
Robotics
Spectra
Spectral methods
STEM
title Two Hybrid Spectral Methods With Inertial Effect for Solving System of Nonlinear Monotone Equations With Application in Robotics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T20%3A59%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20Hybrid%20Spectral%20Methods%20With%20Inertial%20Effect%20for%20Solving%20System%20of%20Nonlinear%20Monotone%20Equations%20With%20Application%20in%20Robotics&rft.jtitle=IEEE%20access&rft.au=Aji,%20Sani&rft.date=2021&rft.volume=9&rft.spage=30918&rft.epage=30928&rft.pages=30918-30928&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3056567&rft_dat=%3Cproquest_doaj_%3E2493601158%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2493601158&rft_id=info:pmid/&rft_ieee_id=9344698&rft_doaj_id=oai_doaj_org_article_78bdaa4e35ce417fb4370b7a7469cbae&rfr_iscdi=true