Two Hybrid Spectral Methods With Inertial Effect for Solving System of Nonlinear Monotone Equations With Application in Robotics
In this work, motivated by the effect of inertial step in accelerating algorithms for solving nonlinear problems such as equilibrium problems, we propose two hybrid spectral algorithms with inertial effect for solving system of nonlinear equations with convex constraints. The search directions in th...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021, Vol.9, p.30918-30928 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 30928 |
---|---|
container_issue | |
container_start_page | 30918 |
container_title | IEEE access |
container_volume | 9 |
creator | Aji, Sani Kumam, Poom Awwal, Aliyu Muhammed Yahaya, Mahmoud Muhammad Kumam, Wiyada |
description | In this work, motivated by the effect of inertial step in accelerating algorithms for solving nonlinear problems such as equilibrium problems, we propose two hybrid spectral algorithms with inertial effect for solving system of nonlinear equations with convex constraints. The search directions in these algorithms use the convex combination of the modified Barzilai and Borwein spectral parameters (IMA journal of numerical analysis, vol. 8, no. 1, pp. 141-148, 1988) and their geometric mean proposed by Dai et al. (In Numerical Analysis and Optimization, pp. 59-75, Springer, 2015). The incorporation of the inertial-step aids the proposed algorithms in producing more efficient results in comparison with three existing spectral algorithms. Under the assumption that the function under consideration is monotone and satisfies Lipschitz continuity, we prove the global convergence of the proposed algorithms. In addition, we also show the application of the proposed algorithms in motion control of two-joint planar robotic manipulator. |
doi_str_mv | 10.1109/ACCESS.2021.3056567 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2493601158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9344698</ieee_id><doaj_id>oai_doaj_org_article_78bdaa4e35ce417fb4370b7a7469cbae</doaj_id><sourcerecordid>2493601158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-316ad43f1294b8bde45a8f9e2c3e11f0920948885988ec1095363cdcea9df8853</originalsourceid><addsrcrecordid>eNpNkUFP3DAQhaOqlYoov4CLJc67tWMnsY-r1VJWgiI1II6W44zBq-AJjrdob_3pNWSF8MXW87xvPH5Fcc7okjGqfq7W603bLktasiWnVV3VzZfipGS1WvCK118_nb8XZ9O0o3nJLFXNSfHv7hXJ1aGLviftCDZFM5AbSE_YT-TBpyeyDRCTz-rGuXxPHEbS4vDXh0fSHqYEzwQd-Y1h8AFMJDcYMGEAsnnZm-QxHDmrcRy8fVeID-QPdpi8nX4U35wZJjg77qfF_eXmbn21uL79tV2vrhdWUJkWnNWmF9yxUolOdj2IykinoLQcGHNUlVQJKWWlpASbvyVPy21vwajeZZmfFtuZ26PZ6TH6ZxMPGo3X7wLGR23ynHYA3WS-MQJ4ZUGwxnWCN7RrTCNqZTsDmXUxs8aIL3uYkt7hPob8fF0KxWvKWCVzFZ-rbMRpiuA-ujKq35LTc3L6LTl9TC67zmeXB4APh-IiN5f8P-yllc8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493601158</pqid></control><display><type>article</type><title>Two Hybrid Spectral Methods With Inertial Effect for Solving System of Nonlinear Monotone Equations With Application in Robotics</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IEEE Xplore Open Access Journals</source><creator>Aji, Sani ; Kumam, Poom ; Awwal, Aliyu Muhammed ; Yahaya, Mahmoud Muhammad ; Kumam, Wiyada</creator><creatorcontrib>Aji, Sani ; Kumam, Poom ; Awwal, Aliyu Muhammed ; Yahaya, Mahmoud Muhammad ; Kumam, Wiyada</creatorcontrib><description>In this work, motivated by the effect of inertial step in accelerating algorithms for solving nonlinear problems such as equilibrium problems, we propose two hybrid spectral algorithms with inertial effect for solving system of nonlinear equations with convex constraints. The search directions in these algorithms use the convex combination of the modified Barzilai and Borwein spectral parameters (IMA journal of numerical analysis, vol. 8, no. 1, pp. 141-148, 1988) and their geometric mean proposed by Dai et al. (In Numerical Analysis and Optimization, pp. 59-75, Springer, 2015). The incorporation of the inertial-step aids the proposed algorithms in producing more efficient results in comparison with three existing spectral algorithms. Under the assumption that the function under consideration is monotone and satisfies Lipschitz continuity, we prove the global convergence of the proposed algorithms. In addition, we also show the application of the proposed algorithms in motion control of two-joint planar robotic manipulator.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3056567</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Barzilai and Borwein parameter ; Convergence ; Gradient methods ; hybrid methods ; Image restoration ; inertial step ; Motion control ; Newton method ; Nonlinear equations ; Numerical analysis ; Optimization ; Parameter modification ; Robot arms ; Robotics ; Spectra ; Spectral methods ; STEM</subject><ispartof>IEEE access, 2021, Vol.9, p.30918-30928</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-316ad43f1294b8bde45a8f9e2c3e11f0920948885988ec1095363cdcea9df8853</citedby><cites>FETCH-LOGICAL-c408t-316ad43f1294b8bde45a8f9e2c3e11f0920948885988ec1095363cdcea9df8853</cites><orcidid>0000-0002-6915-2630 ; 0000-0001-8773-4821 ; 0000-0002-5463-4581 ; 0000-0002-1040-3626 ; 0000-0001-8745-2517</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9344698$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Aji, Sani</creatorcontrib><creatorcontrib>Kumam, Poom</creatorcontrib><creatorcontrib>Awwal, Aliyu Muhammed</creatorcontrib><creatorcontrib>Yahaya, Mahmoud Muhammad</creatorcontrib><creatorcontrib>Kumam, Wiyada</creatorcontrib><title>Two Hybrid Spectral Methods With Inertial Effect for Solving System of Nonlinear Monotone Equations With Application in Robotics</title><title>IEEE access</title><addtitle>Access</addtitle><description>In this work, motivated by the effect of inertial step in accelerating algorithms for solving nonlinear problems such as equilibrium problems, we propose two hybrid spectral algorithms with inertial effect for solving system of nonlinear equations with convex constraints. The search directions in these algorithms use the convex combination of the modified Barzilai and Borwein spectral parameters (IMA journal of numerical analysis, vol. 8, no. 1, pp. 141-148, 1988) and their geometric mean proposed by Dai et al. (In Numerical Analysis and Optimization, pp. 59-75, Springer, 2015). The incorporation of the inertial-step aids the proposed algorithms in producing more efficient results in comparison with three existing spectral algorithms. Under the assumption that the function under consideration is monotone and satisfies Lipschitz continuity, we prove the global convergence of the proposed algorithms. In addition, we also show the application of the proposed algorithms in motion control of two-joint planar robotic manipulator.</description><subject>Algorithms</subject><subject>Barzilai and Borwein parameter</subject><subject>Convergence</subject><subject>Gradient methods</subject><subject>hybrid methods</subject><subject>Image restoration</subject><subject>inertial step</subject><subject>Motion control</subject><subject>Newton method</subject><subject>Nonlinear equations</subject><subject>Numerical analysis</subject><subject>Optimization</subject><subject>Parameter modification</subject><subject>Robot arms</subject><subject>Robotics</subject><subject>Spectra</subject><subject>Spectral methods</subject><subject>STEM</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUFP3DAQhaOqlYoov4CLJc67tWMnsY-r1VJWgiI1II6W44zBq-AJjrdob_3pNWSF8MXW87xvPH5Fcc7okjGqfq7W603bLktasiWnVV3VzZfipGS1WvCK118_nb8XZ9O0o3nJLFXNSfHv7hXJ1aGLviftCDZFM5AbSE_YT-TBpyeyDRCTz-rGuXxPHEbS4vDXh0fSHqYEzwQd-Y1h8AFMJDcYMGEAsnnZm-QxHDmrcRy8fVeID-QPdpi8nX4U35wZJjg77qfF_eXmbn21uL79tV2vrhdWUJkWnNWmF9yxUolOdj2IykinoLQcGHNUlVQJKWWlpASbvyVPy21vwajeZZmfFtuZ26PZ6TH6ZxMPGo3X7wLGR23ynHYA3WS-MQJ4ZUGwxnWCN7RrTCNqZTsDmXUxs8aIL3uYkt7hPob8fF0KxWvKWCVzFZ-rbMRpiuA-ujKq35LTc3L6LTl9TC67zmeXB4APh-IiN5f8P-yllc8</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Aji, Sani</creator><creator>Kumam, Poom</creator><creator>Awwal, Aliyu Muhammed</creator><creator>Yahaya, Mahmoud Muhammad</creator><creator>Kumam, Wiyada</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6915-2630</orcidid><orcidid>https://orcid.org/0000-0001-8773-4821</orcidid><orcidid>https://orcid.org/0000-0002-5463-4581</orcidid><orcidid>https://orcid.org/0000-0002-1040-3626</orcidid><orcidid>https://orcid.org/0000-0001-8745-2517</orcidid></search><sort><creationdate>2021</creationdate><title>Two Hybrid Spectral Methods With Inertial Effect for Solving System of Nonlinear Monotone Equations With Application in Robotics</title><author>Aji, Sani ; Kumam, Poom ; Awwal, Aliyu Muhammed ; Yahaya, Mahmoud Muhammad ; Kumam, Wiyada</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-316ad43f1294b8bde45a8f9e2c3e11f0920948885988ec1095363cdcea9df8853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Barzilai and Borwein parameter</topic><topic>Convergence</topic><topic>Gradient methods</topic><topic>hybrid methods</topic><topic>Image restoration</topic><topic>inertial step</topic><topic>Motion control</topic><topic>Newton method</topic><topic>Nonlinear equations</topic><topic>Numerical analysis</topic><topic>Optimization</topic><topic>Parameter modification</topic><topic>Robot arms</topic><topic>Robotics</topic><topic>Spectra</topic><topic>Spectral methods</topic><topic>STEM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aji, Sani</creatorcontrib><creatorcontrib>Kumam, Poom</creatorcontrib><creatorcontrib>Awwal, Aliyu Muhammed</creatorcontrib><creatorcontrib>Yahaya, Mahmoud Muhammad</creatorcontrib><creatorcontrib>Kumam, Wiyada</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aji, Sani</au><au>Kumam, Poom</au><au>Awwal, Aliyu Muhammed</au><au>Yahaya, Mahmoud Muhammad</au><au>Kumam, Wiyada</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two Hybrid Spectral Methods With Inertial Effect for Solving System of Nonlinear Monotone Equations With Application in Robotics</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>30918</spage><epage>30928</epage><pages>30918-30928</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In this work, motivated by the effect of inertial step in accelerating algorithms for solving nonlinear problems such as equilibrium problems, we propose two hybrid spectral algorithms with inertial effect for solving system of nonlinear equations with convex constraints. The search directions in these algorithms use the convex combination of the modified Barzilai and Borwein spectral parameters (IMA journal of numerical analysis, vol. 8, no. 1, pp. 141-148, 1988) and their geometric mean proposed by Dai et al. (In Numerical Analysis and Optimization, pp. 59-75, Springer, 2015). The incorporation of the inertial-step aids the proposed algorithms in producing more efficient results in comparison with three existing spectral algorithms. Under the assumption that the function under consideration is monotone and satisfies Lipschitz continuity, we prove the global convergence of the proposed algorithms. In addition, we also show the application of the proposed algorithms in motion control of two-joint planar robotic manipulator.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3056567</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6915-2630</orcidid><orcidid>https://orcid.org/0000-0001-8773-4821</orcidid><orcidid>https://orcid.org/0000-0002-5463-4581</orcidid><orcidid>https://orcid.org/0000-0002-1040-3626</orcidid><orcidid>https://orcid.org/0000-0001-8745-2517</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.30918-30928 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2493601158 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; IEEE Xplore Open Access Journals |
subjects | Algorithms Barzilai and Borwein parameter Convergence Gradient methods hybrid methods Image restoration inertial step Motion control Newton method Nonlinear equations Numerical analysis Optimization Parameter modification Robot arms Robotics Spectra Spectral methods STEM |
title | Two Hybrid Spectral Methods With Inertial Effect for Solving System of Nonlinear Monotone Equations With Application in Robotics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T20%3A59%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20Hybrid%20Spectral%20Methods%20With%20Inertial%20Effect%20for%20Solving%20System%20of%20Nonlinear%20Monotone%20Equations%20With%20Application%20in%20Robotics&rft.jtitle=IEEE%20access&rft.au=Aji,%20Sani&rft.date=2021&rft.volume=9&rft.spage=30918&rft.epage=30928&rft.pages=30918-30928&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3056567&rft_dat=%3Cproquest_doaj_%3E2493601158%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2493601158&rft_id=info:pmid/&rft_ieee_id=9344698&rft_doaj_id=oai_doaj_org_article_78bdaa4e35ce417fb4370b7a7469cbae&rfr_iscdi=true |