Distributed Learning in Non-Convex Environments-Part I: Agreement at a Linear Rate
Driven by the need to solve increasingly complex optimization problems in signal processing and machine learning, there has been increasing interest in understanding the behavior of gradient-descent algorithms in non-convex environments. Most available works on distributed non-convex optimization pr...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2021, Vol.69, p.1242-1256 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1256 |
---|---|
container_issue | |
container_start_page | 1242 |
container_title | IEEE transactions on signal processing |
container_volume | 69 |
creator | Vlaski, Stefan Sayed, Ali H. |
description | Driven by the need to solve increasingly complex optimization problems in signal processing and machine learning, there has been increasing interest in understanding the behavior of gradient-descent algorithms in non-convex environments. Most available works on distributed non-convex optimization problems focus on the deterministic setting where exact gradients are available at each agent. In this work and its Part II, we consider stochastic cost functions, where exact gradients are replaced by stochastic approximations and the resulting gradient noise persistently seeps into the dynamics of the algorithm. We establish that the diffusion learning strategy continues to yield meaningful estimates non-convex scenarios in the sense that the iterates by the individual agents will cluster in a small region around the network centroid. We use this insight to motivate a short-term model for network evolution over a finite-horizon. In Part II of this work, we leverage this model to establish descent of the diffusion strategy through saddle points in O(1/μ) steps, where μ denotes the step-size, and the return of approximately second-order stationary points in a polynomial number of iterations. |
doi_str_mv | 10.1109/TSP.2021.3050858 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2493601095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9321168</ieee_id><sourcerecordid>2493601095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-8934cc21408e508322151ed27dc6e621acf8ac085782214d51df94490cf4af5a3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvA89Z8bhNvpVYtLFpqBW8hZmdLis3WZFv035vSIgQmzLzvfDwIXVMyoJTou8XbbMAIowNOJFFSnaAe1YIWRAzL0_wnkhdSDT_O0UVKK0KoELrsofmDT130n9sOalyBjcGHJfYBv7ShGLdhBz94EnY-tmENoUvFzMYOT-_xaBkB9ils88OVD9mM57aDS3TW2K8EV8fYR--Pk8X4uahen6bjUVU4rnVXKM2Fc4wKoiBvzBmjkkLNhrUroWTUukZZl08ZqlwStaR1o_PSxDXCNtLyPro99N3E9nsLqTOrdhtDHmmY0LwkGYvMKnJQudimFKExm-jXNv4aSsyenMnkzJ6cOZLLlpuDxQPAv1xzRmmp-B85smhC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493601095</pqid></control><display><type>article</type><title>Distributed Learning in Non-Convex Environments-Part I: Agreement at a Linear Rate</title><source>IEEE Electronic Library (IEL)</source><creator>Vlaski, Stefan ; Sayed, Ali H.</creator><creatorcontrib>Vlaski, Stefan ; Sayed, Ali H.</creatorcontrib><description>Driven by the need to solve increasingly complex optimization problems in signal processing and machine learning, there has been increasing interest in understanding the behavior of gradient-descent algorithms in non-convex environments. Most available works on distributed non-convex optimization problems focus on the deterministic setting where exact gradients are available at each agent. In this work and its Part II, we consider stochastic cost functions, where exact gradients are replaced by stochastic approximations and the resulting gradient noise persistently seeps into the dynamics of the algorithm. We establish that the diffusion learning strategy continues to yield meaningful estimates non-convex scenarios in the sense that the iterates by the individual agents will cluster in a small region around the network centroid. We use this insight to motivate a short-term model for network evolution over a finite-horizon. In Part II of this work, we leverage this model to establish descent of the diffusion strategy through saddle points in O(1/μ) steps, where μ denotes the step-size, and the return of approximately second-order stationary points in a polynomial number of iterations.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2021.3050858</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>adaptation ; Aggregates ; Algorithms ; Annealing ; Centroids ; Computational geometry ; Convexity ; Cost function ; Descent ; diffusion learning ; distributed optimization ; Eigenvalues and eigenfunctions ; gradient noise ; Heuristic algorithms ; Machine learning ; non-convex cost ; Optimization ; Polynomials ; Saddle points ; Signal processing ; Signal processing algorithms ; stationary points ; Stochastic optimization ; Stochastic processes</subject><ispartof>IEEE transactions on signal processing, 2021, Vol.69, p.1242-1256</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-8934cc21408e508322151ed27dc6e621acf8ac085782214d51df94490cf4af5a3</citedby><cites>FETCH-LOGICAL-c399t-8934cc21408e508322151ed27dc6e621acf8ac085782214d51df94490cf4af5a3</cites><orcidid>0000-0002-5125-5519 ; 0000-0002-0616-3076</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9321168$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9321168$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Vlaski, Stefan</creatorcontrib><creatorcontrib>Sayed, Ali H.</creatorcontrib><title>Distributed Learning in Non-Convex Environments-Part I: Agreement at a Linear Rate</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Driven by the need to solve increasingly complex optimization problems in signal processing and machine learning, there has been increasing interest in understanding the behavior of gradient-descent algorithms in non-convex environments. Most available works on distributed non-convex optimization problems focus on the deterministic setting where exact gradients are available at each agent. In this work and its Part II, we consider stochastic cost functions, where exact gradients are replaced by stochastic approximations and the resulting gradient noise persistently seeps into the dynamics of the algorithm. We establish that the diffusion learning strategy continues to yield meaningful estimates non-convex scenarios in the sense that the iterates by the individual agents will cluster in a small region around the network centroid. We use this insight to motivate a short-term model for network evolution over a finite-horizon. In Part II of this work, we leverage this model to establish descent of the diffusion strategy through saddle points in O(1/μ) steps, where μ denotes the step-size, and the return of approximately second-order stationary points in a polynomial number of iterations.</description><subject>adaptation</subject><subject>Aggregates</subject><subject>Algorithms</subject><subject>Annealing</subject><subject>Centroids</subject><subject>Computational geometry</subject><subject>Convexity</subject><subject>Cost function</subject><subject>Descent</subject><subject>diffusion learning</subject><subject>distributed optimization</subject><subject>Eigenvalues and eigenfunctions</subject><subject>gradient noise</subject><subject>Heuristic algorithms</subject><subject>Machine learning</subject><subject>non-convex cost</subject><subject>Optimization</subject><subject>Polynomials</subject><subject>Saddle points</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>stationary points</subject><subject>Stochastic optimization</subject><subject>Stochastic processes</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvA89Z8bhNvpVYtLFpqBW8hZmdLis3WZFv035vSIgQmzLzvfDwIXVMyoJTou8XbbMAIowNOJFFSnaAe1YIWRAzL0_wnkhdSDT_O0UVKK0KoELrsofmDT130n9sOalyBjcGHJfYBv7ShGLdhBz94EnY-tmENoUvFzMYOT-_xaBkB9ils88OVD9mM57aDS3TW2K8EV8fYR--Pk8X4uahen6bjUVU4rnVXKM2Fc4wKoiBvzBmjkkLNhrUroWTUukZZl08ZqlwStaR1o_PSxDXCNtLyPro99N3E9nsLqTOrdhtDHmmY0LwkGYvMKnJQudimFKExm-jXNv4aSsyenMnkzJ6cOZLLlpuDxQPAv1xzRmmp-B85smhC</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Vlaski, Stefan</creator><creator>Sayed, Ali H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5125-5519</orcidid><orcidid>https://orcid.org/0000-0002-0616-3076</orcidid></search><sort><creationdate>2021</creationdate><title>Distributed Learning in Non-Convex Environments-Part I: Agreement at a Linear Rate</title><author>Vlaski, Stefan ; Sayed, Ali H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-8934cc21408e508322151ed27dc6e621acf8ac085782214d51df94490cf4af5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>adaptation</topic><topic>Aggregates</topic><topic>Algorithms</topic><topic>Annealing</topic><topic>Centroids</topic><topic>Computational geometry</topic><topic>Convexity</topic><topic>Cost function</topic><topic>Descent</topic><topic>diffusion learning</topic><topic>distributed optimization</topic><topic>Eigenvalues and eigenfunctions</topic><topic>gradient noise</topic><topic>Heuristic algorithms</topic><topic>Machine learning</topic><topic>non-convex cost</topic><topic>Optimization</topic><topic>Polynomials</topic><topic>Saddle points</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>stationary points</topic><topic>Stochastic optimization</topic><topic>Stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vlaski, Stefan</creatorcontrib><creatorcontrib>Sayed, Ali H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vlaski, Stefan</au><au>Sayed, Ali H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Learning in Non-Convex Environments-Part I: Agreement at a Linear Rate</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2021</date><risdate>2021</risdate><volume>69</volume><spage>1242</spage><epage>1256</epage><pages>1242-1256</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Driven by the need to solve increasingly complex optimization problems in signal processing and machine learning, there has been increasing interest in understanding the behavior of gradient-descent algorithms in non-convex environments. Most available works on distributed non-convex optimization problems focus on the deterministic setting where exact gradients are available at each agent. In this work and its Part II, we consider stochastic cost functions, where exact gradients are replaced by stochastic approximations and the resulting gradient noise persistently seeps into the dynamics of the algorithm. We establish that the diffusion learning strategy continues to yield meaningful estimates non-convex scenarios in the sense that the iterates by the individual agents will cluster in a small region around the network centroid. We use this insight to motivate a short-term model for network evolution over a finite-horizon. In Part II of this work, we leverage this model to establish descent of the diffusion strategy through saddle points in O(1/μ) steps, where μ denotes the step-size, and the return of approximately second-order stationary points in a polynomial number of iterations.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2021.3050858</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5125-5519</orcidid><orcidid>https://orcid.org/0000-0002-0616-3076</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2021, Vol.69, p.1242-1256 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_proquest_journals_2493601095 |
source | IEEE Electronic Library (IEL) |
subjects | adaptation Aggregates Algorithms Annealing Centroids Computational geometry Convexity Cost function Descent diffusion learning distributed optimization Eigenvalues and eigenfunctions gradient noise Heuristic algorithms Machine learning non-convex cost Optimization Polynomials Saddle points Signal processing Signal processing algorithms stationary points Stochastic optimization Stochastic processes |
title | Distributed Learning in Non-Convex Environments-Part I: Agreement at a Linear Rate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T09%3A43%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Learning%20in%20Non-Convex%20Environments-Part%20I:%20Agreement%20at%20a%20Linear%20Rate&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Vlaski,%20Stefan&rft.date=2021&rft.volume=69&rft.spage=1242&rft.epage=1256&rft.pages=1242-1256&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2021.3050858&rft_dat=%3Cproquest_RIE%3E2493601095%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2493601095&rft_id=info:pmid/&rft_ieee_id=9321168&rfr_iscdi=true |