Monostatic and Bistatic G-Band BiCMOS Radar Transceivers With On-Chip Antennas and Tunable TX-to-RX Leakage Cancellation
This article presents G -band monostatic and bistatic radar transceivers (TRX) incorporating on-chip antennas for short-range high-precision applications. The circuits were fabricated using a silicon-germanium (SiGe) BiCMOS technology offering heterojunction bipolar transistors (HBTs) with \bf {f}...
Gespeichert in:
Veröffentlicht in: | IEEE journal of solid-state circuits 2021-03, Vol.56 (3), p.899-913 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 913 |
---|---|
container_issue | 3 |
container_start_page | 899 |
container_title | IEEE journal of solid-state circuits |
container_volume | 56 |
creator | Kucharski, Maciej Ahmad, Wael Abdullah Ng, Herman Jalli Kissinger, Dietmar |
description | This article presents G -band monostatic and bistatic radar transceivers (TRX) incorporating on-chip antennas for short-range high-precision applications. The circuits were fabricated using a silicon-germanium (SiGe) BiCMOS technology offering heterojunction bipolar transistors (HBTs) with \bf {f}_{\mathbf {T}}/\bf {f}_{\mathbf {MAX}} of 300/500 GHz. The monostatic TRX implements a tunable leakage canceller (LC) for enhanced transmitter (TX)-to-receiver (RX) leakage compensation and hence improved detectability of weakly reflecting near targets. A standalone monostatic TRX characterized at on-wafer level achieves 4-dBm maximum output power ( \bf {P}_{\mathbf {TX}} ) and 19-dB peak conversion gain ( \bf {G}_{\mathbf {RX}} ) with 3-dB bandwidths of 18 and 17GHz for the TX and the RX, respectively. The bistatic version reaches \bf {P}_{\mathbf {TX}} of 13 dBm and \bf {G}_{\mathbf {RX}} of 24 dB expanding the 3-dB bandwidths to 32 and 34 GHz for the TX and RX, respectively. A double-folded dipole antenna providing 5-dBi gain at 170 GHz was implemented using localized backside etching (LBE) and integrated with the transceivers. A frequency-modulated continuous-wave (FMCW) radar demonstrator incorporating an external phase-locked loop (PLL) was built to evaluate both TRXs and tunable leakage cancellation feature available in the monostatic variant. The maximum equivalent isotropic radiated power ( \bf {EIRP} ), including on-chip antennas, is 8 and 18 dBm for the monostatic and bistatic TRX, respectively. The radars support sweep bandwidth up to 20 GHz reaching 2.1 cm spatial resolution. For a target at 1 m distance the measured ranging precision is 105~\mu \text{m} and 13~\mu \text{m} for monostatic and bistatic TRX, accordingly. Activation of leakage cancellation effectively suppresses close-in noise and extends the minimum |
doi_str_mv | 10.1109/JSSC.2020.3041045 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2493595640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9292411</ieee_id><sourcerecordid>2493595640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-f68a717b6f6731ef7c02ebdd05f7e1543e949c81897cdbb6e3c359861279fd63</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOD9-gHgT8DozJ0k_cjmLTmUycAV3V9L0VDtnOpNO9N_b2eHV4YXnfQ88hFwAHwNwff24WGRjwQUfS66Aq-iAjCCKUgaJXB6SEeeQMi04PyYnIaz6qFQKI_L91Lo2dKZrLDWuojfNPkzZzZCzp_mCPpvKeJp744LF5gt9oC9N90bnjmVvzYZOXIfOmfC3kW-dKddI8yXrWva8pDM07-YVaWacxfW632_dGTmqzTrg-f6ekvzuNs_u2Ww-fcgmM2aFlh2r49QkkJRxHScSsE4sF1hWFY_qBCFSErXSNoVUJ7YqyxillZFOYxCJrqtYnpKrYXbj288thq5YtVvv-o-FULpHo1jxnoKBsr4NwWNdbHzzYfxPAbzY-S12foud32Lvt-9cDp0GEf95LbRQAPIX93V1sw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493595640</pqid></control><display><type>article</type><title>Monostatic and Bistatic G-Band BiCMOS Radar Transceivers With On-Chip Antennas and Tunable TX-to-RX Leakage Cancellation</title><source>IEEE Electronic Library (IEL)</source><creator>Kucharski, Maciej ; Ahmad, Wael Abdullah ; Ng, Herman Jalli ; Kissinger, Dietmar</creator><creatorcontrib>Kucharski, Maciej ; Ahmad, Wael Abdullah ; Ng, Herman Jalli ; Kissinger, Dietmar</creatorcontrib><description><![CDATA[This article presents <inline-formula> <tex-math notation="LaTeX">G </tex-math></inline-formula>-band monostatic and bistatic radar transceivers (TRX) incorporating on-chip antennas for short-range high-precision applications. The circuits were fabricated using a silicon-germanium (SiGe) BiCMOS technology offering heterojunction bipolar transistors (HBTs) with <inline-formula> <tex-math notation="LaTeX">\bf {f}_{\mathbf {T}}/\bf {f}_{\mathbf {MAX}} </tex-math></inline-formula> of 300/500 GHz. The monostatic TRX implements a tunable leakage canceller (LC) for enhanced transmitter (TX)-to-receiver (RX) leakage compensation and hence improved detectability of weakly reflecting near targets. A standalone monostatic TRX characterized at on-wafer level achieves 4-dBm maximum output power (<inline-formula> <tex-math notation="LaTeX">\bf {P}_{\mathbf {TX}} </tex-math></inline-formula>) and 19-dB peak conversion gain (<inline-formula> <tex-math notation="LaTeX">\bf {G}_{\mathbf {RX}} </tex-math></inline-formula>) with 3-dB bandwidths of 18 and 17GHz for the TX and the RX, respectively. The bistatic version reaches <inline-formula> <tex-math notation="LaTeX">\bf {P}_{\mathbf {TX}} </tex-math></inline-formula> of 13 dBm and <inline-formula> <tex-math notation="LaTeX">\bf {G}_{\mathbf {RX}} </tex-math></inline-formula> of 24 dB expanding the 3-dB bandwidths to 32 and 34 GHz for the TX and RX, respectively. A double-folded dipole antenna providing 5-dBi gain at 170 GHz was implemented using localized backside etching (LBE) and integrated with the transceivers. A frequency-modulated continuous-wave (FMCW) radar demonstrator incorporating an external phase-locked loop (PLL) was built to evaluate both TRXs and tunable leakage cancellation feature available in the monostatic variant. The maximum equivalent isotropic radiated power (<inline-formula> <tex-math notation="LaTeX">\bf {EIRP} </tex-math></inline-formula>), including on-chip antennas, is 8 and 18 dBm for the monostatic and bistatic TRX, respectively. The radars support sweep bandwidth up to 20 GHz reaching 2.1 cm spatial resolution. For a target at 1 m distance the measured ranging precision is <inline-formula> <tex-math notation="LaTeX">105~\mu \text{m} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">13~\mu \text{m} </tex-math></inline-formula> for monostatic and bistatic TRX, accordingly. Activation of leakage cancellation effectively suppresses close-in noise and extends the minimum detectable range remarkably.]]></description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2020.3041045</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">D -band ; <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">G -band ; Antennas ; Bandwidths ; BiCMOS ; Cancellation ; Circulators ; CMOS ; Continuous radiation ; Couplers ; Dipole antennas ; frequency-modulated continuous-wave (FMCW) ; Germanium ; Heterojunction bipolar transistors ; Leakage ; leakage cancellation ; low-noise amplifier ; Multistatic radar ; on-chip antenna ; Phase locked loops ; power amplifier (PA) ; Radar ; Radar antennas ; scalable ; Semiconductor devices ; Spatial resolution ; System-on-chip ; transceiver ; Transceivers ; voltage-controlled oscillator (VCO)</subject><ispartof>IEEE journal of solid-state circuits, 2021-03, Vol.56 (3), p.899-913</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-f68a717b6f6731ef7c02ebdd05f7e1543e949c81897cdbb6e3c359861279fd63</citedby><cites>FETCH-LOGICAL-c293t-f68a717b6f6731ef7c02ebdd05f7e1543e949c81897cdbb6e3c359861279fd63</cites><orcidid>0000-0001-9685-3048 ; 0000-0002-6440-5029 ; 0000-0001-9598-6498 ; 0000-0002-9698-4432</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9292411$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9292411$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kucharski, Maciej</creatorcontrib><creatorcontrib>Ahmad, Wael Abdullah</creatorcontrib><creatorcontrib>Ng, Herman Jalli</creatorcontrib><creatorcontrib>Kissinger, Dietmar</creatorcontrib><title>Monostatic and Bistatic G-Band BiCMOS Radar Transceivers With On-Chip Antennas and Tunable TX-to-RX Leakage Cancellation</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description><![CDATA[This article presents <inline-formula> <tex-math notation="LaTeX">G </tex-math></inline-formula>-band monostatic and bistatic radar transceivers (TRX) incorporating on-chip antennas for short-range high-precision applications. The circuits were fabricated using a silicon-germanium (SiGe) BiCMOS technology offering heterojunction bipolar transistors (HBTs) with <inline-formula> <tex-math notation="LaTeX">\bf {f}_{\mathbf {T}}/\bf {f}_{\mathbf {MAX}} </tex-math></inline-formula> of 300/500 GHz. The monostatic TRX implements a tunable leakage canceller (LC) for enhanced transmitter (TX)-to-receiver (RX) leakage compensation and hence improved detectability of weakly reflecting near targets. A standalone monostatic TRX characterized at on-wafer level achieves 4-dBm maximum output power (<inline-formula> <tex-math notation="LaTeX">\bf {P}_{\mathbf {TX}} </tex-math></inline-formula>) and 19-dB peak conversion gain (<inline-formula> <tex-math notation="LaTeX">\bf {G}_{\mathbf {RX}} </tex-math></inline-formula>) with 3-dB bandwidths of 18 and 17GHz for the TX and the RX, respectively. The bistatic version reaches <inline-formula> <tex-math notation="LaTeX">\bf {P}_{\mathbf {TX}} </tex-math></inline-formula> of 13 dBm and <inline-formula> <tex-math notation="LaTeX">\bf {G}_{\mathbf {RX}} </tex-math></inline-formula> of 24 dB expanding the 3-dB bandwidths to 32 and 34 GHz for the TX and RX, respectively. A double-folded dipole antenna providing 5-dBi gain at 170 GHz was implemented using localized backside etching (LBE) and integrated with the transceivers. A frequency-modulated continuous-wave (FMCW) radar demonstrator incorporating an external phase-locked loop (PLL) was built to evaluate both TRXs and tunable leakage cancellation feature available in the monostatic variant. The maximum equivalent isotropic radiated power (<inline-formula> <tex-math notation="LaTeX">\bf {EIRP} </tex-math></inline-formula>), including on-chip antennas, is 8 and 18 dBm for the monostatic and bistatic TRX, respectively. The radars support sweep bandwidth up to 20 GHz reaching 2.1 cm spatial resolution. For a target at 1 m distance the measured ranging precision is <inline-formula> <tex-math notation="LaTeX">105~\mu \text{m} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">13~\mu \text{m} </tex-math></inline-formula> for monostatic and bistatic TRX, accordingly. Activation of leakage cancellation effectively suppresses close-in noise and extends the minimum detectable range remarkably.]]></description><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">D -band</subject><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">G -band</subject><subject>Antennas</subject><subject>Bandwidths</subject><subject>BiCMOS</subject><subject>Cancellation</subject><subject>Circulators</subject><subject>CMOS</subject><subject>Continuous radiation</subject><subject>Couplers</subject><subject>Dipole antennas</subject><subject>frequency-modulated continuous-wave (FMCW)</subject><subject>Germanium</subject><subject>Heterojunction bipolar transistors</subject><subject>Leakage</subject><subject>leakage cancellation</subject><subject>low-noise amplifier</subject><subject>Multistatic radar</subject><subject>on-chip antenna</subject><subject>Phase locked loops</subject><subject>power amplifier (PA)</subject><subject>Radar</subject><subject>Radar antennas</subject><subject>scalable</subject><subject>Semiconductor devices</subject><subject>Spatial resolution</subject><subject>System-on-chip</subject><subject>transceiver</subject><subject>Transceivers</subject><subject>voltage-controlled oscillator (VCO)</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOD9-gHgT8DozJ0k_cjmLTmUycAV3V9L0VDtnOpNO9N_b2eHV4YXnfQ88hFwAHwNwff24WGRjwQUfS66Aq-iAjCCKUgaJXB6SEeeQMi04PyYnIaz6qFQKI_L91Lo2dKZrLDWuojfNPkzZzZCzp_mCPpvKeJp744LF5gt9oC9N90bnjmVvzYZOXIfOmfC3kW-dKddI8yXrWva8pDM07-YVaWacxfW632_dGTmqzTrg-f6ekvzuNs_u2Ww-fcgmM2aFlh2r49QkkJRxHScSsE4sF1hWFY_qBCFSErXSNoVUJ7YqyxillZFOYxCJrqtYnpKrYXbj288thq5YtVvv-o-FULpHo1jxnoKBsr4NwWNdbHzzYfxPAbzY-S12foud32Lvt-9cDp0GEf95LbRQAPIX93V1sw</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Kucharski, Maciej</creator><creator>Ahmad, Wael Abdullah</creator><creator>Ng, Herman Jalli</creator><creator>Kissinger, Dietmar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9685-3048</orcidid><orcidid>https://orcid.org/0000-0002-6440-5029</orcidid><orcidid>https://orcid.org/0000-0001-9598-6498</orcidid><orcidid>https://orcid.org/0000-0002-9698-4432</orcidid></search><sort><creationdate>20210301</creationdate><title>Monostatic and Bistatic G-Band BiCMOS Radar Transceivers With On-Chip Antennas and Tunable TX-to-RX Leakage Cancellation</title><author>Kucharski, Maciej ; Ahmad, Wael Abdullah ; Ng, Herman Jalli ; Kissinger, Dietmar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-f68a717b6f6731ef7c02ebdd05f7e1543e949c81897cdbb6e3c359861279fd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">D -band</topic><topic><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">G -band</topic><topic>Antennas</topic><topic>Bandwidths</topic><topic>BiCMOS</topic><topic>Cancellation</topic><topic>Circulators</topic><topic>CMOS</topic><topic>Continuous radiation</topic><topic>Couplers</topic><topic>Dipole antennas</topic><topic>frequency-modulated continuous-wave (FMCW)</topic><topic>Germanium</topic><topic>Heterojunction bipolar transistors</topic><topic>Leakage</topic><topic>leakage cancellation</topic><topic>low-noise amplifier</topic><topic>Multistatic radar</topic><topic>on-chip antenna</topic><topic>Phase locked loops</topic><topic>power amplifier (PA)</topic><topic>Radar</topic><topic>Radar antennas</topic><topic>scalable</topic><topic>Semiconductor devices</topic><topic>Spatial resolution</topic><topic>System-on-chip</topic><topic>transceiver</topic><topic>Transceivers</topic><topic>voltage-controlled oscillator (VCO)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kucharski, Maciej</creatorcontrib><creatorcontrib>Ahmad, Wael Abdullah</creatorcontrib><creatorcontrib>Ng, Herman Jalli</creatorcontrib><creatorcontrib>Kissinger, Dietmar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kucharski, Maciej</au><au>Ahmad, Wael Abdullah</au><au>Ng, Herman Jalli</au><au>Kissinger, Dietmar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monostatic and Bistatic G-Band BiCMOS Radar Transceivers With On-Chip Antennas and Tunable TX-to-RX Leakage Cancellation</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>56</volume><issue>3</issue><spage>899</spage><epage>913</epage><pages>899-913</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract><![CDATA[This article presents <inline-formula> <tex-math notation="LaTeX">G </tex-math></inline-formula>-band monostatic and bistatic radar transceivers (TRX) incorporating on-chip antennas for short-range high-precision applications. The circuits were fabricated using a silicon-germanium (SiGe) BiCMOS technology offering heterojunction bipolar transistors (HBTs) with <inline-formula> <tex-math notation="LaTeX">\bf {f}_{\mathbf {T}}/\bf {f}_{\mathbf {MAX}} </tex-math></inline-formula> of 300/500 GHz. The monostatic TRX implements a tunable leakage canceller (LC) for enhanced transmitter (TX)-to-receiver (RX) leakage compensation and hence improved detectability of weakly reflecting near targets. A standalone monostatic TRX characterized at on-wafer level achieves 4-dBm maximum output power (<inline-formula> <tex-math notation="LaTeX">\bf {P}_{\mathbf {TX}} </tex-math></inline-formula>) and 19-dB peak conversion gain (<inline-formula> <tex-math notation="LaTeX">\bf {G}_{\mathbf {RX}} </tex-math></inline-formula>) with 3-dB bandwidths of 18 and 17GHz for the TX and the RX, respectively. The bistatic version reaches <inline-formula> <tex-math notation="LaTeX">\bf {P}_{\mathbf {TX}} </tex-math></inline-formula> of 13 dBm and <inline-formula> <tex-math notation="LaTeX">\bf {G}_{\mathbf {RX}} </tex-math></inline-formula> of 24 dB expanding the 3-dB bandwidths to 32 and 34 GHz for the TX and RX, respectively. A double-folded dipole antenna providing 5-dBi gain at 170 GHz was implemented using localized backside etching (LBE) and integrated with the transceivers. A frequency-modulated continuous-wave (FMCW) radar demonstrator incorporating an external phase-locked loop (PLL) was built to evaluate both TRXs and tunable leakage cancellation feature available in the monostatic variant. The maximum equivalent isotropic radiated power (<inline-formula> <tex-math notation="LaTeX">\bf {EIRP} </tex-math></inline-formula>), including on-chip antennas, is 8 and 18 dBm for the monostatic and bistatic TRX, respectively. The radars support sweep bandwidth up to 20 GHz reaching 2.1 cm spatial resolution. For a target at 1 m distance the measured ranging precision is <inline-formula> <tex-math notation="LaTeX">105~\mu \text{m} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">13~\mu \text{m} </tex-math></inline-formula> for monostatic and bistatic TRX, accordingly. Activation of leakage cancellation effectively suppresses close-in noise and extends the minimum detectable range remarkably.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSSC.2020.3041045</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9685-3048</orcidid><orcidid>https://orcid.org/0000-0002-6440-5029</orcidid><orcidid>https://orcid.org/0000-0001-9598-6498</orcidid><orcidid>https://orcid.org/0000-0002-9698-4432</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9200 |
ispartof | IEEE journal of solid-state circuits, 2021-03, Vol.56 (3), p.899-913 |
issn | 0018-9200 1558-173X |
language | eng |
recordid | cdi_proquest_journals_2493595640 |
source | IEEE Electronic Library (IEL) |
subjects | <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">D -band <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">G -band Antennas Bandwidths BiCMOS Cancellation Circulators CMOS Continuous radiation Couplers Dipole antennas frequency-modulated continuous-wave (FMCW) Germanium Heterojunction bipolar transistors Leakage leakage cancellation low-noise amplifier Multistatic radar on-chip antenna Phase locked loops power amplifier (PA) Radar Radar antennas scalable Semiconductor devices Spatial resolution System-on-chip transceiver Transceivers voltage-controlled oscillator (VCO) |
title | Monostatic and Bistatic G-Band BiCMOS Radar Transceivers With On-Chip Antennas and Tunable TX-to-RX Leakage Cancellation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A28%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monostatic%20and%20Bistatic%20G-Band%20BiCMOS%20Radar%20Transceivers%20With%20On-Chip%20Antennas%20and%20Tunable%20TX-to-RX%20Leakage%20Cancellation&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Kucharski,%20Maciej&rft.date=2021-03-01&rft.volume=56&rft.issue=3&rft.spage=899&rft.epage=913&rft.pages=899-913&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2020.3041045&rft_dat=%3Cproquest_RIE%3E2493595640%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2493595640&rft_id=info:pmid/&rft_ieee_id=9292411&rfr_iscdi=true |