Magnesium Hall Thruster with Active Thermal Mass Flow Control

An active thermal mass flow control system for condensable propellant Hall-effect thrusters was demonstrated. The control system has the ability to arrest thermal runaway in a direct evaporation feed system and stabilize the discharge current during voltage-limited operation of a 2 kW magnesium-fuel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of propulsion and power 2014-05, Vol.30 (3), p.637-644
Hauptverfasser: Hopkins, Mark A, King, Lyon B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 644
container_issue 3
container_start_page 637
container_title Journal of propulsion and power
container_volume 30
creator Hopkins, Mark A
King, Lyon B
description An active thermal mass flow control system for condensable propellant Hall-effect thrusters was demonstrated. The control system has the ability to arrest thermal runaway in a direct evaporation feed system and stabilize the discharge current during voltage-limited operation of a 2 kW magnesium-fueled Hall-effect thruster. The system supplemented plasma discharge heating at the evaporative anode with a resistive heater located behind the anode. A proportional-integral-derivative control algorithm was implemented to enable automated operation of the mass flow control system using the discharge current as the measured variable and the anode heater current as the controlled parameter. Steady-state operation at constant voltage with discharge current excursions less than 0.35 A was demonstrated for 70 min. A thrust of 44 mN was measured at a discharge voltage of 300 V at 6 A, yielding a thrust-to-power ratio of 24.4±0.8  mN/kW. A thrust of 50 mN was measured at a discharge voltage of 300 V at 7 A, yielding a thrust-to-power ratio of 23.8±0.6  mN/kW. For a thruster operating at 2.1 kW, the steady-state supplemental heater power was 136 W, representing only 6% of the total system power.
doi_str_mv 10.2514/1.B34888
format Article
fullrecord <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_proquest_journals_2493591618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3405798211</sourcerecordid><originalsourceid>FETCH-LOGICAL-a346t-ddb122d30c36fbaa0bde40de95f099f34339aeda555709f8e4310de48041097f3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFbBnxAQwUvqfmf34KEWa4UWL_W8TJONTdlk627S4r83UkHpwdPAOw_PDC9C1wSPqCD8noweGVdKnaABEYylTGXyFA1wxlXKpVDn6CLGDcZEKpkN0MMC3hsbq65OZuBcslyHLrY2JPuqXSfjvK12tg9tqMElC4gxmTq_Tya-aYN3l-isBBft1c8corfp03IyS-evzy-T8TwFxmWbFsWKUFownDNZrgDwqrAcF1aLEmtdMs6YBluAECLDulSWM9KvucKcYJ2VbIjuDt5t8B-dja2pq5hb56CxvouGSE6poJziHr05Qje-C03_naFcM6GJJOo_igjBVG-S8vdsHnyMwZZmG6oawqch2Hy3bYg5tN2jtwcUKoA_smPuC846efI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1553842066</pqid></control><display><type>article</type><title>Magnesium Hall Thruster with Active Thermal Mass Flow Control</title><source>Alma/SFX Local Collection</source><creator>Hopkins, Mark A ; King, Lyon B</creator><creatorcontrib>Hopkins, Mark A ; King, Lyon B</creatorcontrib><description>An active thermal mass flow control system for condensable propellant Hall-effect thrusters was demonstrated. The control system has the ability to arrest thermal runaway in a direct evaporation feed system and stabilize the discharge current during voltage-limited operation of a 2 kW magnesium-fueled Hall-effect thruster. The system supplemented plasma discharge heating at the evaporative anode with a resistive heater located behind the anode. A proportional-integral-derivative control algorithm was implemented to enable automated operation of the mass flow control system using the discharge current as the measured variable and the anode heater current as the controlled parameter. Steady-state operation at constant voltage with discharge current excursions less than 0.35 A was demonstrated for 70 min. A thrust of 44 mN was measured at a discharge voltage of 300 V at 6 A, yielding a thrust-to-power ratio of 24.4±0.8  mN/kW. A thrust of 50 mN was measured at a discharge voltage of 300 V at 7 A, yielding a thrust-to-power ratio of 23.8±0.6  mN/kW. For a thruster operating at 2.1 kW, the steady-state supplemental heater power was 136 W, representing only 6% of the total system power.</description><identifier>ISSN: 0748-4658</identifier><identifier>EISSN: 1533-3876</identifier><identifier>DOI: 10.2514/1.B34888</identifier><identifier>CODEN: JPPOEL</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><subject>Active control ; Algorithms ; Anode effect ; Anodes ; Automatic control ; Control algorithms ; Control systems ; Control theory ; Discharge ; Electric potential ; Feed systems ; Flow control ; Hall effect ; Heaters ; Heating equipment ; Magnesium ; Mass flow ; Plasma jets ; Proportional integral derivative ; Stability ; Steady state ; Thermal runaway ; Thrust ; Thrusters ; Voltage</subject><ispartof>Journal of propulsion and power, 2014-05, Vol.30 (3), p.637-644</ispartof><rights>Copyright © 2013 by Mark A. Hopkins. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code and $10.00 in correspondence with the CCC.</rights><rights>Copyright © 2013 by Mark A. Hopkins. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code 1533-3876/14 and $10.00 in correspondence with the CCC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a346t-ddb122d30c36fbaa0bde40de95f099f34339aeda555709f8e4310de48041097f3</citedby><cites>FETCH-LOGICAL-a346t-ddb122d30c36fbaa0bde40de95f099f34339aeda555709f8e4310de48041097f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hopkins, Mark A</creatorcontrib><creatorcontrib>King, Lyon B</creatorcontrib><title>Magnesium Hall Thruster with Active Thermal Mass Flow Control</title><title>Journal of propulsion and power</title><description>An active thermal mass flow control system for condensable propellant Hall-effect thrusters was demonstrated. The control system has the ability to arrest thermal runaway in a direct evaporation feed system and stabilize the discharge current during voltage-limited operation of a 2 kW magnesium-fueled Hall-effect thruster. The system supplemented plasma discharge heating at the evaporative anode with a resistive heater located behind the anode. A proportional-integral-derivative control algorithm was implemented to enable automated operation of the mass flow control system using the discharge current as the measured variable and the anode heater current as the controlled parameter. Steady-state operation at constant voltage with discharge current excursions less than 0.35 A was demonstrated for 70 min. A thrust of 44 mN was measured at a discharge voltage of 300 V at 6 A, yielding a thrust-to-power ratio of 24.4±0.8  mN/kW. A thrust of 50 mN was measured at a discharge voltage of 300 V at 7 A, yielding a thrust-to-power ratio of 23.8±0.6  mN/kW. For a thruster operating at 2.1 kW, the steady-state supplemental heater power was 136 W, representing only 6% of the total system power.</description><subject>Active control</subject><subject>Algorithms</subject><subject>Anode effect</subject><subject>Anodes</subject><subject>Automatic control</subject><subject>Control algorithms</subject><subject>Control systems</subject><subject>Control theory</subject><subject>Discharge</subject><subject>Electric potential</subject><subject>Feed systems</subject><subject>Flow control</subject><subject>Hall effect</subject><subject>Heaters</subject><subject>Heating equipment</subject><subject>Magnesium</subject><subject>Mass flow</subject><subject>Plasma jets</subject><subject>Proportional integral derivative</subject><subject>Stability</subject><subject>Steady state</subject><subject>Thermal runaway</subject><subject>Thrust</subject><subject>Thrusters</subject><subject>Voltage</subject><issn>0748-4658</issn><issn>1533-3876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFbBnxAQwUvqfmf34KEWa4UWL_W8TJONTdlk627S4r83UkHpwdPAOw_PDC9C1wSPqCD8noweGVdKnaABEYylTGXyFA1wxlXKpVDn6CLGDcZEKpkN0MMC3hsbq65OZuBcslyHLrY2JPuqXSfjvK12tg9tqMElC4gxmTq_Tya-aYN3l-isBBft1c8corfp03IyS-evzy-T8TwFxmWbFsWKUFownDNZrgDwqrAcF1aLEmtdMs6YBluAECLDulSWM9KvucKcYJ2VbIjuDt5t8B-dja2pq5hb56CxvouGSE6poJziHr05Qje-C03_naFcM6GJJOo_igjBVG-S8vdsHnyMwZZmG6oawqch2Hy3bYg5tN2jtwcUKoA_smPuC846efI</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Hopkins, Mark A</creator><creator>King, Lyon B</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140501</creationdate><title>Magnesium Hall Thruster with Active Thermal Mass Flow Control</title><author>Hopkins, Mark A ; King, Lyon B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a346t-ddb122d30c36fbaa0bde40de95f099f34339aeda555709f8e4310de48041097f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Active control</topic><topic>Algorithms</topic><topic>Anode effect</topic><topic>Anodes</topic><topic>Automatic control</topic><topic>Control algorithms</topic><topic>Control systems</topic><topic>Control theory</topic><topic>Discharge</topic><topic>Electric potential</topic><topic>Feed systems</topic><topic>Flow control</topic><topic>Hall effect</topic><topic>Heaters</topic><topic>Heating equipment</topic><topic>Magnesium</topic><topic>Mass flow</topic><topic>Plasma jets</topic><topic>Proportional integral derivative</topic><topic>Stability</topic><topic>Steady state</topic><topic>Thermal runaway</topic><topic>Thrust</topic><topic>Thrusters</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hopkins, Mark A</creatorcontrib><creatorcontrib>King, Lyon B</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of propulsion and power</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hopkins, Mark A</au><au>King, Lyon B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnesium Hall Thruster with Active Thermal Mass Flow Control</atitle><jtitle>Journal of propulsion and power</jtitle><date>2014-05-01</date><risdate>2014</risdate><volume>30</volume><issue>3</issue><spage>637</spage><epage>644</epage><pages>637-644</pages><issn>0748-4658</issn><eissn>1533-3876</eissn><coden>JPPOEL</coden><abstract>An active thermal mass flow control system for condensable propellant Hall-effect thrusters was demonstrated. The control system has the ability to arrest thermal runaway in a direct evaporation feed system and stabilize the discharge current during voltage-limited operation of a 2 kW magnesium-fueled Hall-effect thruster. The system supplemented plasma discharge heating at the evaporative anode with a resistive heater located behind the anode. A proportional-integral-derivative control algorithm was implemented to enable automated operation of the mass flow control system using the discharge current as the measured variable and the anode heater current as the controlled parameter. Steady-state operation at constant voltage with discharge current excursions less than 0.35 A was demonstrated for 70 min. A thrust of 44 mN was measured at a discharge voltage of 300 V at 6 A, yielding a thrust-to-power ratio of 24.4±0.8  mN/kW. A thrust of 50 mN was measured at a discharge voltage of 300 V at 7 A, yielding a thrust-to-power ratio of 23.8±0.6  mN/kW. For a thruster operating at 2.1 kW, the steady-state supplemental heater power was 136 W, representing only 6% of the total system power.</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.B34888</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0748-4658
ispartof Journal of propulsion and power, 2014-05, Vol.30 (3), p.637-644
issn 0748-4658
1533-3876
language eng
recordid cdi_proquest_journals_2493591618
source Alma/SFX Local Collection
subjects Active control
Algorithms
Anode effect
Anodes
Automatic control
Control algorithms
Control systems
Control theory
Discharge
Electric potential
Feed systems
Flow control
Hall effect
Heaters
Heating equipment
Magnesium
Mass flow
Plasma jets
Proportional integral derivative
Stability
Steady state
Thermal runaway
Thrust
Thrusters
Voltage
title Magnesium Hall Thruster with Active Thermal Mass Flow Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A58%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnesium%20Hall%20Thruster%20with%20Active%20Thermal%20Mass%20Flow%20Control&rft.jtitle=Journal%20of%20propulsion%20and%20power&rft.au=Hopkins,%20Mark%20A&rft.date=2014-05-01&rft.volume=30&rft.issue=3&rft.spage=637&rft.epage=644&rft.pages=637-644&rft.issn=0748-4658&rft.eissn=1533-3876&rft.coden=JPPOEL&rft_id=info:doi/10.2514/1.B34888&rft_dat=%3Cproquest_aiaa_%3E3405798211%3C/proquest_aiaa_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1553842066&rft_id=info:pmid/&rfr_iscdi=true