Characterization of gradient CuAl–B4C composites additively manufactured using a combination of wire-feed and powder-bed electron beam deposition methods

A combination of wire-feed and powder-bed electron beam additive deposition was applied for fabricating a gradient heterogeneous and wear-resistant CuAl–B4C multilayer composite with two different contents of the boron carbide particles. To improve the CuAl alloy wetting ability on the carbide powde...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2021-04, Vol.859, p.157824, Article 157824
Hauptverfasser: Filippov, A.V., Khoroshko, E.S., Shamarin, N.N., Savchenko, N.L., Moskvichev, E.N., Utyaganova, V.R., Kolubaev, E.A., Smolin, A.Yu, Tarasov, S.Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 157824
container_title Journal of alloys and compounds
container_volume 859
creator Filippov, A.V.
Khoroshko, E.S.
Shamarin, N.N.
Savchenko, N.L.
Moskvichev, E.N.
Utyaganova, V.R.
Kolubaev, E.A.
Smolin, A.Yu
Tarasov, S.Yu
description A combination of wire-feed and powder-bed electron beam additive deposition was applied for fabricating a gradient heterogeneous and wear-resistant CuAl–B4C multilayer composite with two different contents of the boron carbide particles. To improve the CuAl alloy wetting ability on the carbide powder bed, the latter was admixed with aluminum powder. A gradient distribution of the boron carbide in the aluminum bronze matrix was achieved for composites with 50 and 25 vol% B4C, which were characterized by microhardness, coefficient of friction, and wear resistance. The 50 vol% B4C sample demonstrated higher hardness but lower wear resistance against and coefficient of friction as compared to those of 25 vol% B4C one, when reciprocally rubbed against a 52,100 steel ball. •A combination of wire-feed and powder-bed methods was used to make CuAl–B4C composite.•Fully dense composites were obtained with gradient B4C concentration.•The hardness of printed composites is determined by the content of B4C particles.•Wear of the printed composite is 2.2 times lower than of printed CuAl bronze.
doi_str_mv 10.1016/j.jallcom.2020.157824
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2493529796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838820341888</els_id><sourcerecordid>2493529796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-f77a302463e30ef134a3aa4698ed0ddf129b02d0c459f3b2a6b510fbe20bd5443</originalsourceid><addsrcrecordid>eNqFkctq3DAUhkVJoZNpHiEg6NpT3XzRqqQmaQuBbpK1kKWjRMa2ppKckKz6Dl327fok1XRCt1kJie__xDk_QueU7CihzcdxN-ppMmHeMcLKW912TLxBG9q1vBJNI0_QhkhWVx3vunfoNKWREEIlpxv0u7_XUZsM0T_r7MOCg8N3UVsPS8b9ejH9-fnrs-hx0e9D8hkS1tb67B9gesKzXlZX4msEi9fklzusD-jgl_-2Rx-hclAAvVi8D48WYjWUK0xgcizQAHrGFv75D6EZ8n2w6T166_SU4Ozl3KLbq8ub_mt1_f3Lt_7iujKct7lybas5YaLhwAk4yoXmWotGdmCJtY4yORBmiRG1dHxguhlqStwAjAy2FoJv0Yejdx_DjxVSVmNY41K-VExIXjPZyqZQ9ZEyMaQUwal99LOOT4oSdehBjeqlB3XoQR17KLlPxxyUER48RJVMWa4BW_ZisrLBv2L4C9QkmA8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493529796</pqid></control><display><type>article</type><title>Characterization of gradient CuAl–B4C composites additively manufactured using a combination of wire-feed and powder-bed electron beam deposition methods</title><source>Elsevier ScienceDirect Journals</source><creator>Filippov, A.V. ; Khoroshko, E.S. ; Shamarin, N.N. ; Savchenko, N.L. ; Moskvichev, E.N. ; Utyaganova, V.R. ; Kolubaev, E.A. ; Smolin, A.Yu ; Tarasov, S.Yu</creator><creatorcontrib>Filippov, A.V. ; Khoroshko, E.S. ; Shamarin, N.N. ; Savchenko, N.L. ; Moskvichev, E.N. ; Utyaganova, V.R. ; Kolubaev, E.A. ; Smolin, A.Yu ; Tarasov, S.Yu</creatorcontrib><description>A combination of wire-feed and powder-bed electron beam additive deposition was applied for fabricating a gradient heterogeneous and wear-resistant CuAl–B4C multilayer composite with two different contents of the boron carbide particles. To improve the CuAl alloy wetting ability on the carbide powder bed, the latter was admixed with aluminum powder. A gradient distribution of the boron carbide in the aluminum bronze matrix was achieved for composites with 50 and 25 vol% B4C, which were characterized by microhardness, coefficient of friction, and wear resistance. The 50 vol% B4C sample demonstrated higher hardness but lower wear resistance against and coefficient of friction as compared to those of 25 vol% B4C one, when reciprocally rubbed against a 52,100 steel ball. •A combination of wire-feed and powder-bed methods was used to make CuAl–B4C composite.•Fully dense composites were obtained with gradient B4C concentration.•The hardness of printed composites is determined by the content of B4C particles.•Wear of the printed composite is 2.2 times lower than of printed CuAl bronze.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2020.157824</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Aluminum bronzes ; Armor ; Boron carbide ; Coefficient of friction ; Composite materials ; Deposition ; Electron beam ; Electron beams ; Microhardness ; Multilayers ; Powder beds ; Powder-bed ; Structure ; Wear ; Wear resistance ; Wetting ; Wire ; Wire-feed</subject><ispartof>Journal of alloys and compounds, 2021-04, Vol.859, p.157824, Article 157824</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Apr 5, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-f77a302463e30ef134a3aa4698ed0ddf129b02d0c459f3b2a6b510fbe20bd5443</citedby><cites>FETCH-LOGICAL-c337t-f77a302463e30ef134a3aa4698ed0ddf129b02d0c459f3b2a6b510fbe20bd5443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925838820341888$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Filippov, A.V.</creatorcontrib><creatorcontrib>Khoroshko, E.S.</creatorcontrib><creatorcontrib>Shamarin, N.N.</creatorcontrib><creatorcontrib>Savchenko, N.L.</creatorcontrib><creatorcontrib>Moskvichev, E.N.</creatorcontrib><creatorcontrib>Utyaganova, V.R.</creatorcontrib><creatorcontrib>Kolubaev, E.A.</creatorcontrib><creatorcontrib>Smolin, A.Yu</creatorcontrib><creatorcontrib>Tarasov, S.Yu</creatorcontrib><title>Characterization of gradient CuAl–B4C composites additively manufactured using a combination of wire-feed and powder-bed electron beam deposition methods</title><title>Journal of alloys and compounds</title><description>A combination of wire-feed and powder-bed electron beam additive deposition was applied for fabricating a gradient heterogeneous and wear-resistant CuAl–B4C multilayer composite with two different contents of the boron carbide particles. To improve the CuAl alloy wetting ability on the carbide powder bed, the latter was admixed with aluminum powder. A gradient distribution of the boron carbide in the aluminum bronze matrix was achieved for composites with 50 and 25 vol% B4C, which were characterized by microhardness, coefficient of friction, and wear resistance. The 50 vol% B4C sample demonstrated higher hardness but lower wear resistance against and coefficient of friction as compared to those of 25 vol% B4C one, when reciprocally rubbed against a 52,100 steel ball. •A combination of wire-feed and powder-bed methods was used to make CuAl–B4C composite.•Fully dense composites were obtained with gradient B4C concentration.•The hardness of printed composites is determined by the content of B4C particles.•Wear of the printed composite is 2.2 times lower than of printed CuAl bronze.</description><subject>Aluminum bronzes</subject><subject>Armor</subject><subject>Boron carbide</subject><subject>Coefficient of friction</subject><subject>Composite materials</subject><subject>Deposition</subject><subject>Electron beam</subject><subject>Electron beams</subject><subject>Microhardness</subject><subject>Multilayers</subject><subject>Powder beds</subject><subject>Powder-bed</subject><subject>Structure</subject><subject>Wear</subject><subject>Wear resistance</subject><subject>Wetting</subject><subject>Wire</subject><subject>Wire-feed</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkctq3DAUhkVJoZNpHiEg6NpT3XzRqqQmaQuBbpK1kKWjRMa2ppKckKz6Dl327fok1XRCt1kJie__xDk_QueU7CihzcdxN-ppMmHeMcLKW912TLxBG9q1vBJNI0_QhkhWVx3vunfoNKWREEIlpxv0u7_XUZsM0T_r7MOCg8N3UVsPS8b9ejH9-fnrs-hx0e9D8hkS1tb67B9gesKzXlZX4msEi9fklzusD-jgl_-2Rx-hclAAvVi8D48WYjWUK0xgcizQAHrGFv75D6EZ8n2w6T166_SU4Ozl3KLbq8ub_mt1_f3Lt_7iujKct7lybas5YaLhwAk4yoXmWotGdmCJtY4yORBmiRG1dHxguhlqStwAjAy2FoJv0Yejdx_DjxVSVmNY41K-VExIXjPZyqZQ9ZEyMaQUwal99LOOT4oSdehBjeqlB3XoQR17KLlPxxyUER48RJVMWa4BW_ZisrLBv2L4C9QkmA8</recordid><startdate>20210405</startdate><enddate>20210405</enddate><creator>Filippov, A.V.</creator><creator>Khoroshko, E.S.</creator><creator>Shamarin, N.N.</creator><creator>Savchenko, N.L.</creator><creator>Moskvichev, E.N.</creator><creator>Utyaganova, V.R.</creator><creator>Kolubaev, E.A.</creator><creator>Smolin, A.Yu</creator><creator>Tarasov, S.Yu</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20210405</creationdate><title>Characterization of gradient CuAl–B4C composites additively manufactured using a combination of wire-feed and powder-bed electron beam deposition methods</title><author>Filippov, A.V. ; Khoroshko, E.S. ; Shamarin, N.N. ; Savchenko, N.L. ; Moskvichev, E.N. ; Utyaganova, V.R. ; Kolubaev, E.A. ; Smolin, A.Yu ; Tarasov, S.Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-f77a302463e30ef134a3aa4698ed0ddf129b02d0c459f3b2a6b510fbe20bd5443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum bronzes</topic><topic>Armor</topic><topic>Boron carbide</topic><topic>Coefficient of friction</topic><topic>Composite materials</topic><topic>Deposition</topic><topic>Electron beam</topic><topic>Electron beams</topic><topic>Microhardness</topic><topic>Multilayers</topic><topic>Powder beds</topic><topic>Powder-bed</topic><topic>Structure</topic><topic>Wear</topic><topic>Wear resistance</topic><topic>Wetting</topic><topic>Wire</topic><topic>Wire-feed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Filippov, A.V.</creatorcontrib><creatorcontrib>Khoroshko, E.S.</creatorcontrib><creatorcontrib>Shamarin, N.N.</creatorcontrib><creatorcontrib>Savchenko, N.L.</creatorcontrib><creatorcontrib>Moskvichev, E.N.</creatorcontrib><creatorcontrib>Utyaganova, V.R.</creatorcontrib><creatorcontrib>Kolubaev, E.A.</creatorcontrib><creatorcontrib>Smolin, A.Yu</creatorcontrib><creatorcontrib>Tarasov, S.Yu</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Filippov, A.V.</au><au>Khoroshko, E.S.</au><au>Shamarin, N.N.</au><au>Savchenko, N.L.</au><au>Moskvichev, E.N.</au><au>Utyaganova, V.R.</au><au>Kolubaev, E.A.</au><au>Smolin, A.Yu</au><au>Tarasov, S.Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of gradient CuAl–B4C composites additively manufactured using a combination of wire-feed and powder-bed electron beam deposition methods</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2021-04-05</date><risdate>2021</risdate><volume>859</volume><spage>157824</spage><pages>157824-</pages><artnum>157824</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>A combination of wire-feed and powder-bed electron beam additive deposition was applied for fabricating a gradient heterogeneous and wear-resistant CuAl–B4C multilayer composite with two different contents of the boron carbide particles. To improve the CuAl alloy wetting ability on the carbide powder bed, the latter was admixed with aluminum powder. A gradient distribution of the boron carbide in the aluminum bronze matrix was achieved for composites with 50 and 25 vol% B4C, which were characterized by microhardness, coefficient of friction, and wear resistance. The 50 vol% B4C sample demonstrated higher hardness but lower wear resistance against and coefficient of friction as compared to those of 25 vol% B4C one, when reciprocally rubbed against a 52,100 steel ball. •A combination of wire-feed and powder-bed methods was used to make CuAl–B4C composite.•Fully dense composites were obtained with gradient B4C concentration.•The hardness of printed composites is determined by the content of B4C particles.•Wear of the printed composite is 2.2 times lower than of printed CuAl bronze.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2020.157824</doi></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2021-04, Vol.859, p.157824, Article 157824
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2493529796
source Elsevier ScienceDirect Journals
subjects Aluminum bronzes
Armor
Boron carbide
Coefficient of friction
Composite materials
Deposition
Electron beam
Electron beams
Microhardness
Multilayers
Powder beds
Powder-bed
Structure
Wear
Wear resistance
Wetting
Wire
Wire-feed
title Characterization of gradient CuAl–B4C composites additively manufactured using a combination of wire-feed and powder-bed electron beam deposition methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A19%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20gradient%20CuAl%E2%80%93B4C%20composites%20additively%20manufactured%20using%20a%20combination%20of%20wire-feed%20and%20powder-bed%20electron%20beam%20deposition%20methods&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Filippov,%20A.V.&rft.date=2021-04-05&rft.volume=859&rft.spage=157824&rft.pages=157824-&rft.artnum=157824&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2020.157824&rft_dat=%3Cproquest_cross%3E2493529796%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2493529796&rft_id=info:pmid/&rft_els_id=S0925838820341888&rfr_iscdi=true