Resource-efficient encoding algorithm for variational bosonic quantum simulations

Quantum algorithms are promising candidates for the enhancement of computational efficiency for a variety of computational tasks, allowing for the numerical study of physical systems intractable to classical computers. In the Noisy Intermediate Scale Quantum (NISQ) era of quantum computing, however,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-05
Hauptverfasser: Majland, Marco, Zinner, Nikolaj Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Majland, Marco
Zinner, Nikolaj Thomas
description Quantum algorithms are promising candidates for the enhancement of computational efficiency for a variety of computational tasks, allowing for the numerical study of physical systems intractable to classical computers. In the Noisy Intermediate Scale Quantum (NISQ) era of quantum computing, however, quantum resources are limited and thus quantum algorithms utilizing such resources efficiently are highly coveted. We present a resource-efficient quantum algorithm for bosonic ground and excited state computations using the Variational Quantum Eigensolver algorithm with the Unitary Coupled Cluster ansatz. The algorithm is based on two quantum resource reduction strategies, consisting of a selective Hamming truncation of the encoded qubit Hilbert space along with a qubit ground state encoding protocol. Our algorithm proves to significantly increase accuracy with a simultaneous reduction of required quantum resources compared to current approaches. Furthermore, the selective Hamming truncation of our algorithm presents a versatile method to tailor the utilized quantum resources of a quantum computer depending on the hardware parameters. Finally, our work may contribute to shortening the route to achieve a practical quantum advantage in bosonic quantum simulations. The study of vibrational properties of molecular systems is crucial in a variety of contexts, such as spectroscopy, fluorescence, chemical reaction dynamics and transport properties. Thus, our algorithm provides a resource-efficient flexible approach to study such applications in the context of quantum computational chemistry on quantum computers.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2493268850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2493268850</sourcerecordid><originalsourceid>FETCH-proquest_journals_24932688503</originalsourceid><addsrcrecordid>eNqNjcEKwjAQBYMgWLT_EPBcqElb61kUr4p3iTGpW9KszSZ-v0X8AE_vMMO8GcuElJuirYRYsJyoL8tSNFtR1zJj54shTEGbwlgLGoyP3HiND_AdV67DAPE5cIuBv1UAFQG9cvyOhB40H5PyMQ2cYEjuC2nF5lY5Mvlvl2x9PFz3p-IVcEyG4q2fDqcI3US1k6Jp27qU_1kfX0BA1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493268850</pqid></control><display><type>article</type><title>Resource-efficient encoding algorithm for variational bosonic quantum simulations</title><source>Free E- Journals</source><creator>Majland, Marco ; Zinner, Nikolaj Thomas</creator><creatorcontrib>Majland, Marco ; Zinner, Nikolaj Thomas</creatorcontrib><description>Quantum algorithms are promising candidates for the enhancement of computational efficiency for a variety of computational tasks, allowing for the numerical study of physical systems intractable to classical computers. In the Noisy Intermediate Scale Quantum (NISQ) era of quantum computing, however, quantum resources are limited and thus quantum algorithms utilizing such resources efficiently are highly coveted. We present a resource-efficient quantum algorithm for bosonic ground and excited state computations using the Variational Quantum Eigensolver algorithm with the Unitary Coupled Cluster ansatz. The algorithm is based on two quantum resource reduction strategies, consisting of a selective Hamming truncation of the encoded qubit Hilbert space along with a qubit ground state encoding protocol. Our algorithm proves to significantly increase accuracy with a simultaneous reduction of required quantum resources compared to current approaches. Furthermore, the selective Hamming truncation of our algorithm presents a versatile method to tailor the utilized quantum resources of a quantum computer depending on the hardware parameters. Finally, our work may contribute to shortening the route to achieve a practical quantum advantage in bosonic quantum simulations. The study of vibrational properties of molecular systems is crucial in a variety of contexts, such as spectroscopy, fluorescence, chemical reaction dynamics and transport properties. Thus, our algorithm provides a resource-efficient flexible approach to study such applications in the context of quantum computational chemistry on quantum computers.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Chemical reactions ; Computational chemistry ; Fault tolerance ; Fluorescence ; Parameters ; Quantum computers ; Quantum computing ; Simulation ; Transport properties</subject><ispartof>arXiv.org, 2021-05</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Majland, Marco</creatorcontrib><creatorcontrib>Zinner, Nikolaj Thomas</creatorcontrib><title>Resource-efficient encoding algorithm for variational bosonic quantum simulations</title><title>arXiv.org</title><description>Quantum algorithms are promising candidates for the enhancement of computational efficiency for a variety of computational tasks, allowing for the numerical study of physical systems intractable to classical computers. In the Noisy Intermediate Scale Quantum (NISQ) era of quantum computing, however, quantum resources are limited and thus quantum algorithms utilizing such resources efficiently are highly coveted. We present a resource-efficient quantum algorithm for bosonic ground and excited state computations using the Variational Quantum Eigensolver algorithm with the Unitary Coupled Cluster ansatz. The algorithm is based on two quantum resource reduction strategies, consisting of a selective Hamming truncation of the encoded qubit Hilbert space along with a qubit ground state encoding protocol. Our algorithm proves to significantly increase accuracy with a simultaneous reduction of required quantum resources compared to current approaches. Furthermore, the selective Hamming truncation of our algorithm presents a versatile method to tailor the utilized quantum resources of a quantum computer depending on the hardware parameters. Finally, our work may contribute to shortening the route to achieve a practical quantum advantage in bosonic quantum simulations. The study of vibrational properties of molecular systems is crucial in a variety of contexts, such as spectroscopy, fluorescence, chemical reaction dynamics and transport properties. Thus, our algorithm provides a resource-efficient flexible approach to study such applications in the context of quantum computational chemistry on quantum computers.</description><subject>Algorithms</subject><subject>Chemical reactions</subject><subject>Computational chemistry</subject><subject>Fault tolerance</subject><subject>Fluorescence</subject><subject>Parameters</subject><subject>Quantum computers</subject><subject>Quantum computing</subject><subject>Simulation</subject><subject>Transport properties</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjcEKwjAQBYMgWLT_EPBcqElb61kUr4p3iTGpW9KszSZ-v0X8AE_vMMO8GcuElJuirYRYsJyoL8tSNFtR1zJj54shTEGbwlgLGoyP3HiND_AdV67DAPE5cIuBv1UAFQG9cvyOhB40H5PyMQ2cYEjuC2nF5lY5Mvlvl2x9PFz3p-IVcEyG4q2fDqcI3US1k6Jp27qU_1kfX0BA1Q</recordid><startdate>20210512</startdate><enddate>20210512</enddate><creator>Majland, Marco</creator><creator>Zinner, Nikolaj Thomas</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210512</creationdate><title>Resource-efficient encoding algorithm for variational bosonic quantum simulations</title><author>Majland, Marco ; Zinner, Nikolaj Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24932688503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Chemical reactions</topic><topic>Computational chemistry</topic><topic>Fault tolerance</topic><topic>Fluorescence</topic><topic>Parameters</topic><topic>Quantum computers</topic><topic>Quantum computing</topic><topic>Simulation</topic><topic>Transport properties</topic><toplevel>online_resources</toplevel><creatorcontrib>Majland, Marco</creatorcontrib><creatorcontrib>Zinner, Nikolaj Thomas</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Majland, Marco</au><au>Zinner, Nikolaj Thomas</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Resource-efficient encoding algorithm for variational bosonic quantum simulations</atitle><jtitle>arXiv.org</jtitle><date>2021-05-12</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Quantum algorithms are promising candidates for the enhancement of computational efficiency for a variety of computational tasks, allowing for the numerical study of physical systems intractable to classical computers. In the Noisy Intermediate Scale Quantum (NISQ) era of quantum computing, however, quantum resources are limited and thus quantum algorithms utilizing such resources efficiently are highly coveted. We present a resource-efficient quantum algorithm for bosonic ground and excited state computations using the Variational Quantum Eigensolver algorithm with the Unitary Coupled Cluster ansatz. The algorithm is based on two quantum resource reduction strategies, consisting of a selective Hamming truncation of the encoded qubit Hilbert space along with a qubit ground state encoding protocol. Our algorithm proves to significantly increase accuracy with a simultaneous reduction of required quantum resources compared to current approaches. Furthermore, the selective Hamming truncation of our algorithm presents a versatile method to tailor the utilized quantum resources of a quantum computer depending on the hardware parameters. Finally, our work may contribute to shortening the route to achieve a practical quantum advantage in bosonic quantum simulations. The study of vibrational properties of molecular systems is crucial in a variety of contexts, such as spectroscopy, fluorescence, chemical reaction dynamics and transport properties. Thus, our algorithm provides a resource-efficient flexible approach to study such applications in the context of quantum computational chemistry on quantum computers.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2493268850
source Free E- Journals
subjects Algorithms
Chemical reactions
Computational chemistry
Fault tolerance
Fluorescence
Parameters
Quantum computers
Quantum computing
Simulation
Transport properties
title Resource-efficient encoding algorithm for variational bosonic quantum simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A43%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Resource-efficient%20encoding%20algorithm%20for%20variational%20bosonic%20quantum%20simulations&rft.jtitle=arXiv.org&rft.au=Majland,%20Marco&rft.date=2021-05-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2493268850%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2493268850&rft_id=info:pmid/&rfr_iscdi=true