The Tikhonov regularization for vector equilibrium problems
We consider vector equilibrium problems in real Banach spaces and study their regularized problems. Based on cone continuity and generalized convexity properties of vector-valued mappings, we propose general conditions that guarantee existence of solutions to such problems in cases of monotonicity a...
Gespeichert in:
Veröffentlicht in: | Computational optimization and applications 2021-04, Vol.78 (3), p.769-792 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 792 |
---|---|
container_issue | 3 |
container_start_page | 769 |
container_title | Computational optimization and applications |
container_volume | 78 |
creator | Anh, Lam Quoc Duy, Tran Quoc Muu, Le Dung Tri, Truong Van |
description | We consider vector equilibrium problems in real Banach spaces and study their regularized problems. Based on cone continuity and generalized convexity properties of vector-valued mappings, we propose general conditions that guarantee existence of solutions to such problems in cases of monotonicity and nonmonotonicity. First, our study indicates that every Tikhonov trajectory converges to a solution to the original problem. Then, we establish the equivalence between the problem solvability and the boundedness of any Tikhonov trajectory. Finally, the convergence of the Tikhonov trajectory to the least-norm solution of the original problem is discussed. |
doi_str_mv | 10.1007/s10589-020-00258-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2493262436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2493262436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-fd3f13fb3b01073e6ab403cd32f32be7f61979abeccb668967eafa0443fd6eb23</originalsourceid><addsrcrecordid>eNp9kM9LwzAYhoMoOKf_gKeC5-iXfF3S4EmGv2DgpZ5D0iVbZ9duSTtwf73RCt48vZfnfV94CLlmcMsA5F1kMCsUBQ4UgM8KejwhEzaTSHmh8lMyAcUFFQB4Ti5i3ACAksgn5L5cu6ysP9Zd2x2y4FZDY0J9NH3dtZnvQnZwVZ_C7Ye6qW2oh222C51t3DZekjNvmuiufnNK3p8ey_kLXbw9v84fFrRCpnrql-gZeosWGEh0wtgcsFoi98itk14wJZWxrqqsEIUS0hlvIM_RL4WzHKfkZtxNx_vBxV5vuiG06VLzXCEXPEeRKD5SVehiDM7rXai3JnxqBvpbkh4l6SRJ_0jSx1TCsRQT3K5c-Jv-p_UFLJFrmg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493262436</pqid></control><display><type>article</type><title>The Tikhonov regularization for vector equilibrium problems</title><source>EBSCOhost Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Anh, Lam Quoc ; Duy, Tran Quoc ; Muu, Le Dung ; Tri, Truong Van</creator><creatorcontrib>Anh, Lam Quoc ; Duy, Tran Quoc ; Muu, Le Dung ; Tri, Truong Van</creatorcontrib><description>We consider vector equilibrium problems in real Banach spaces and study their regularized problems. Based on cone continuity and generalized convexity properties of vector-valued mappings, we propose general conditions that guarantee existence of solutions to such problems in cases of monotonicity and nonmonotonicity. First, our study indicates that every Tikhonov trajectory converges to a solution to the original problem. Then, we establish the equivalence between the problem solvability and the boundedness of any Tikhonov trajectory. Finally, the convergence of the Tikhonov trajectory to the least-norm solution of the original problem is discussed.</description><identifier>ISSN: 0926-6003</identifier><identifier>EISSN: 1573-2894</identifier><identifier>DOI: 10.1007/s10589-020-00258-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Banach spaces ; Convergence ; Convex and Discrete Geometry ; Convexity ; Management Science ; Mathematics ; Mathematics and Statistics ; Operations Research ; Operations Research/Decision Theory ; Optimization ; Regularization ; Statistics</subject><ispartof>Computational optimization and applications, 2021-04, Vol.78 (3), p.769-792</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-fd3f13fb3b01073e6ab403cd32f32be7f61979abeccb668967eafa0443fd6eb23</citedby><cites>FETCH-LOGICAL-c319t-fd3f13fb3b01073e6ab403cd32f32be7f61979abeccb668967eafa0443fd6eb23</cites><orcidid>0000-0001-9524-4179</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10589-020-00258-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10589-020-00258-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Anh, Lam Quoc</creatorcontrib><creatorcontrib>Duy, Tran Quoc</creatorcontrib><creatorcontrib>Muu, Le Dung</creatorcontrib><creatorcontrib>Tri, Truong Van</creatorcontrib><title>The Tikhonov regularization for vector equilibrium problems</title><title>Computational optimization and applications</title><addtitle>Comput Optim Appl</addtitle><description>We consider vector equilibrium problems in real Banach spaces and study their regularized problems. Based on cone continuity and generalized convexity properties of vector-valued mappings, we propose general conditions that guarantee existence of solutions to such problems in cases of monotonicity and nonmonotonicity. First, our study indicates that every Tikhonov trajectory converges to a solution to the original problem. Then, we establish the equivalence between the problem solvability and the boundedness of any Tikhonov trajectory. Finally, the convergence of the Tikhonov trajectory to the least-norm solution of the original problem is discussed.</description><subject>Banach spaces</subject><subject>Convergence</subject><subject>Convex and Discrete Geometry</subject><subject>Convexity</subject><subject>Management Science</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Regularization</subject><subject>Statistics</subject><issn>0926-6003</issn><issn>1573-2894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM9LwzAYhoMoOKf_gKeC5-iXfF3S4EmGv2DgpZ5D0iVbZ9duSTtwf73RCt48vZfnfV94CLlmcMsA5F1kMCsUBQ4UgM8KejwhEzaTSHmh8lMyAcUFFQB4Ti5i3ACAksgn5L5cu6ysP9Zd2x2y4FZDY0J9NH3dtZnvQnZwVZ_C7Ye6qW2oh222C51t3DZekjNvmuiufnNK3p8ey_kLXbw9v84fFrRCpnrql-gZeosWGEh0wtgcsFoi98itk14wJZWxrqqsEIUS0hlvIM_RL4WzHKfkZtxNx_vBxV5vuiG06VLzXCEXPEeRKD5SVehiDM7rXai3JnxqBvpbkh4l6SRJ_0jSx1TCsRQT3K5c-Jv-p_UFLJFrmg</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Anh, Lam Quoc</creator><creator>Duy, Tran Quoc</creator><creator>Muu, Le Dung</creator><creator>Tri, Truong Van</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-9524-4179</orcidid></search><sort><creationdate>20210401</creationdate><title>The Tikhonov regularization for vector equilibrium problems</title><author>Anh, Lam Quoc ; Duy, Tran Quoc ; Muu, Le Dung ; Tri, Truong Van</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-fd3f13fb3b01073e6ab403cd32f32be7f61979abeccb668967eafa0443fd6eb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Banach spaces</topic><topic>Convergence</topic><topic>Convex and Discrete Geometry</topic><topic>Convexity</topic><topic>Management Science</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Regularization</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anh, Lam Quoc</creatorcontrib><creatorcontrib>Duy, Tran Quoc</creatorcontrib><creatorcontrib>Muu, Le Dung</creatorcontrib><creatorcontrib>Tri, Truong Van</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Computational optimization and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anh, Lam Quoc</au><au>Duy, Tran Quoc</au><au>Muu, Le Dung</au><au>Tri, Truong Van</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Tikhonov regularization for vector equilibrium problems</atitle><jtitle>Computational optimization and applications</jtitle><stitle>Comput Optim Appl</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>78</volume><issue>3</issue><spage>769</spage><epage>792</epage><pages>769-792</pages><issn>0926-6003</issn><eissn>1573-2894</eissn><abstract>We consider vector equilibrium problems in real Banach spaces and study their regularized problems. Based on cone continuity and generalized convexity properties of vector-valued mappings, we propose general conditions that guarantee existence of solutions to such problems in cases of monotonicity and nonmonotonicity. First, our study indicates that every Tikhonov trajectory converges to a solution to the original problem. Then, we establish the equivalence between the problem solvability and the boundedness of any Tikhonov trajectory. Finally, the convergence of the Tikhonov trajectory to the least-norm solution of the original problem is discussed.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10589-020-00258-z</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0001-9524-4179</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0926-6003 |
ispartof | Computational optimization and applications, 2021-04, Vol.78 (3), p.769-792 |
issn | 0926-6003 1573-2894 |
language | eng |
recordid | cdi_proquest_journals_2493262436 |
source | EBSCOhost Business Source Complete; SpringerLink Journals - AutoHoldings |
subjects | Banach spaces Convergence Convex and Discrete Geometry Convexity Management Science Mathematics Mathematics and Statistics Operations Research Operations Research/Decision Theory Optimization Regularization Statistics |
title | The Tikhonov regularization for vector equilibrium problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A46%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Tikhonov%20regularization%20for%20vector%20equilibrium%20problems&rft.jtitle=Computational%20optimization%20and%20applications&rft.au=Anh,%20Lam%20Quoc&rft.date=2021-04-01&rft.volume=78&rft.issue=3&rft.spage=769&rft.epage=792&rft.pages=769-792&rft.issn=0926-6003&rft.eissn=1573-2894&rft_id=info:doi/10.1007/s10589-020-00258-z&rft_dat=%3Cproquest_cross%3E2493262436%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2493262436&rft_id=info:pmid/&rfr_iscdi=true |