The Tikhonov regularization for vector equilibrium problems

We consider vector equilibrium problems in real Banach spaces and study their regularized problems. Based on cone continuity and generalized convexity properties of vector-valued mappings, we propose general conditions that guarantee existence of solutions to such problems in cases of monotonicity a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational optimization and applications 2021-04, Vol.78 (3), p.769-792
Hauptverfasser: Anh, Lam Quoc, Duy, Tran Quoc, Muu, Le Dung, Tri, Truong Van
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 792
container_issue 3
container_start_page 769
container_title Computational optimization and applications
container_volume 78
creator Anh, Lam Quoc
Duy, Tran Quoc
Muu, Le Dung
Tri, Truong Van
description We consider vector equilibrium problems in real Banach spaces and study their regularized problems. Based on cone continuity and generalized convexity properties of vector-valued mappings, we propose general conditions that guarantee existence of solutions to such problems in cases of monotonicity and nonmonotonicity. First, our study indicates that every Tikhonov trajectory converges to a solution to the original problem. Then, we establish the equivalence between the problem solvability and the boundedness of any Tikhonov trajectory. Finally, the convergence of the Tikhonov trajectory to the least-norm solution of the original problem is discussed.
doi_str_mv 10.1007/s10589-020-00258-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2493262436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2493262436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-fd3f13fb3b01073e6ab403cd32f32be7f61979abeccb668967eafa0443fd6eb23</originalsourceid><addsrcrecordid>eNp9kM9LwzAYhoMoOKf_gKeC5-iXfF3S4EmGv2DgpZ5D0iVbZ9duSTtwf73RCt48vZfnfV94CLlmcMsA5F1kMCsUBQ4UgM8KejwhEzaTSHmh8lMyAcUFFQB4Ti5i3ACAksgn5L5cu6ysP9Zd2x2y4FZDY0J9NH3dtZnvQnZwVZ_C7Ye6qW2oh222C51t3DZekjNvmuiufnNK3p8ey_kLXbw9v84fFrRCpnrql-gZeosWGEh0wtgcsFoi98itk14wJZWxrqqsEIUS0hlvIM_RL4WzHKfkZtxNx_vBxV5vuiG06VLzXCEXPEeRKD5SVehiDM7rXai3JnxqBvpbkh4l6SRJ_0jSx1TCsRQT3K5c-Jv-p_UFLJFrmg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493262436</pqid></control><display><type>article</type><title>The Tikhonov regularization for vector equilibrium problems</title><source>EBSCOhost Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Anh, Lam Quoc ; Duy, Tran Quoc ; Muu, Le Dung ; Tri, Truong Van</creator><creatorcontrib>Anh, Lam Quoc ; Duy, Tran Quoc ; Muu, Le Dung ; Tri, Truong Van</creatorcontrib><description>We consider vector equilibrium problems in real Banach spaces and study their regularized problems. Based on cone continuity and generalized convexity properties of vector-valued mappings, we propose general conditions that guarantee existence of solutions to such problems in cases of monotonicity and nonmonotonicity. First, our study indicates that every Tikhonov trajectory converges to a solution to the original problem. Then, we establish the equivalence between the problem solvability and the boundedness of any Tikhonov trajectory. Finally, the convergence of the Tikhonov trajectory to the least-norm solution of the original problem is discussed.</description><identifier>ISSN: 0926-6003</identifier><identifier>EISSN: 1573-2894</identifier><identifier>DOI: 10.1007/s10589-020-00258-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Banach spaces ; Convergence ; Convex and Discrete Geometry ; Convexity ; Management Science ; Mathematics ; Mathematics and Statistics ; Operations Research ; Operations Research/Decision Theory ; Optimization ; Regularization ; Statistics</subject><ispartof>Computational optimization and applications, 2021-04, Vol.78 (3), p.769-792</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-fd3f13fb3b01073e6ab403cd32f32be7f61979abeccb668967eafa0443fd6eb23</citedby><cites>FETCH-LOGICAL-c319t-fd3f13fb3b01073e6ab403cd32f32be7f61979abeccb668967eafa0443fd6eb23</cites><orcidid>0000-0001-9524-4179</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10589-020-00258-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10589-020-00258-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Anh, Lam Quoc</creatorcontrib><creatorcontrib>Duy, Tran Quoc</creatorcontrib><creatorcontrib>Muu, Le Dung</creatorcontrib><creatorcontrib>Tri, Truong Van</creatorcontrib><title>The Tikhonov regularization for vector equilibrium problems</title><title>Computational optimization and applications</title><addtitle>Comput Optim Appl</addtitle><description>We consider vector equilibrium problems in real Banach spaces and study their regularized problems. Based on cone continuity and generalized convexity properties of vector-valued mappings, we propose general conditions that guarantee existence of solutions to such problems in cases of monotonicity and nonmonotonicity. First, our study indicates that every Tikhonov trajectory converges to a solution to the original problem. Then, we establish the equivalence between the problem solvability and the boundedness of any Tikhonov trajectory. Finally, the convergence of the Tikhonov trajectory to the least-norm solution of the original problem is discussed.</description><subject>Banach spaces</subject><subject>Convergence</subject><subject>Convex and Discrete Geometry</subject><subject>Convexity</subject><subject>Management Science</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Regularization</subject><subject>Statistics</subject><issn>0926-6003</issn><issn>1573-2894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM9LwzAYhoMoOKf_gKeC5-iXfF3S4EmGv2DgpZ5D0iVbZ9duSTtwf73RCt48vZfnfV94CLlmcMsA5F1kMCsUBQ4UgM8KejwhEzaTSHmh8lMyAcUFFQB4Ti5i3ACAksgn5L5cu6ysP9Zd2x2y4FZDY0J9NH3dtZnvQnZwVZ_C7Ye6qW2oh222C51t3DZekjNvmuiufnNK3p8ey_kLXbw9v84fFrRCpnrql-gZeosWGEh0wtgcsFoi98itk14wJZWxrqqsEIUS0hlvIM_RL4WzHKfkZtxNx_vBxV5vuiG06VLzXCEXPEeRKD5SVehiDM7rXai3JnxqBvpbkh4l6SRJ_0jSx1TCsRQT3K5c-Jv-p_UFLJFrmg</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Anh, Lam Quoc</creator><creator>Duy, Tran Quoc</creator><creator>Muu, Le Dung</creator><creator>Tri, Truong Van</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-9524-4179</orcidid></search><sort><creationdate>20210401</creationdate><title>The Tikhonov regularization for vector equilibrium problems</title><author>Anh, Lam Quoc ; Duy, Tran Quoc ; Muu, Le Dung ; Tri, Truong Van</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-fd3f13fb3b01073e6ab403cd32f32be7f61979abeccb668967eafa0443fd6eb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Banach spaces</topic><topic>Convergence</topic><topic>Convex and Discrete Geometry</topic><topic>Convexity</topic><topic>Management Science</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Regularization</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anh, Lam Quoc</creatorcontrib><creatorcontrib>Duy, Tran Quoc</creatorcontrib><creatorcontrib>Muu, Le Dung</creatorcontrib><creatorcontrib>Tri, Truong Van</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Computational optimization and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anh, Lam Quoc</au><au>Duy, Tran Quoc</au><au>Muu, Le Dung</au><au>Tri, Truong Van</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Tikhonov regularization for vector equilibrium problems</atitle><jtitle>Computational optimization and applications</jtitle><stitle>Comput Optim Appl</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>78</volume><issue>3</issue><spage>769</spage><epage>792</epage><pages>769-792</pages><issn>0926-6003</issn><eissn>1573-2894</eissn><abstract>We consider vector equilibrium problems in real Banach spaces and study their regularized problems. Based on cone continuity and generalized convexity properties of vector-valued mappings, we propose general conditions that guarantee existence of solutions to such problems in cases of monotonicity and nonmonotonicity. First, our study indicates that every Tikhonov trajectory converges to a solution to the original problem. Then, we establish the equivalence between the problem solvability and the boundedness of any Tikhonov trajectory. Finally, the convergence of the Tikhonov trajectory to the least-norm solution of the original problem is discussed.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10589-020-00258-z</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0001-9524-4179</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0926-6003
ispartof Computational optimization and applications, 2021-04, Vol.78 (3), p.769-792
issn 0926-6003
1573-2894
language eng
recordid cdi_proquest_journals_2493262436
source EBSCOhost Business Source Complete; SpringerLink Journals - AutoHoldings
subjects Banach spaces
Convergence
Convex and Discrete Geometry
Convexity
Management Science
Mathematics
Mathematics and Statistics
Operations Research
Operations Research/Decision Theory
Optimization
Regularization
Statistics
title The Tikhonov regularization for vector equilibrium problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A46%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Tikhonov%20regularization%20for%20vector%20equilibrium%20problems&rft.jtitle=Computational%20optimization%20and%20applications&rft.au=Anh,%20Lam%20Quoc&rft.date=2021-04-01&rft.volume=78&rft.issue=3&rft.spage=769&rft.epage=792&rft.pages=769-792&rft.issn=0926-6003&rft.eissn=1573-2894&rft_id=info:doi/10.1007/s10589-020-00258-z&rft_dat=%3Cproquest_cross%3E2493262436%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2493262436&rft_id=info:pmid/&rfr_iscdi=true