Numerical Study on Transitional Flows Using a Correlation-Based Transition Model

A correlation-based transition model is assessed against distinct test cases. The configurations include a zero-pressure-gradient flat plate, a single-element aeronautical airfoil, a multielement high-lift airfoil and a wing–body configuration. These test cases are selected in order to cover differe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of aircraft 2016-07, Vol.53 (4), p.922-941
Hauptverfasser: Halila, Gustavo Luiz Olichevis, Bigarella, Enda Dimitri Vieira, Azevedo, João Luiz F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 941
container_issue 4
container_start_page 922
container_title Journal of aircraft
container_volume 53
creator Halila, Gustavo Luiz Olichevis
Bigarella, Enda Dimitri Vieira
Azevedo, João Luiz F
description A correlation-based transition model is assessed against distinct test cases. The configurations include a zero-pressure-gradient flat plate, a single-element aeronautical airfoil, a multielement high-lift airfoil and a wing–body configuration. These test cases are selected in order to cover different transition mechanisms in increasingly complex scenarios. The simulations are performed considering the compressible preconditioned Reynolds-averaged Navier–Stokes equations, which are one of the options offered by the CFD++ finite volume solver. Turbulence closure is achieved with the shear-stress transport model. This turbulence model is augmented by a transition model based on two additional transport equations: one for the intermittency, and another for the momentum-thickness Reynolds number. Flow parameters, such as freestream turbulence intensity and turbulence length scale, or the eddy viscosity ratio, have important effects on transition onset and extension of the transition region. Mesh refinement and y+ dependence are numerical parameters investigated in this work. The dimensionless wall distance y+ has a significant impact in the computational results. The transition model is also very sensitive to the inflow boundary conditions for the turbulence variables, namely, the freestream turbulence intensity and the eddy viscosity ratio. Good agreement with the experimental data is observed.
doi_str_mv 10.2514/1.C033311
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2493212352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2493212352</sourcerecordid><originalsourceid>FETCH-LOGICAL-a288t-b351cd71efa81c600eebf540408c75236dcefc379070378a7aff3558a827c82e3</originalsourceid><addsrcrecordid>eNplkF1LwzAUhoMoOKcX_oOAIHjReZI0TXqpxakwP8DtOpylqXR0zUxaZP_ejg0UvHrhvA8Ph5eQSwYTLll6yyYFCCEYOyIjJoVIhM70MRkBcJboLMtPyVmMKwDQoNSIvL_2axdqiw396PpyS31L5wHbWHe1b4frtPHfkS5i3X5SpIUPwTW465J7jK78A9MXX7rmnJxU2ER3ccgxWUwf5sVTMnt7fC7uZglyrbtkKSSzpWKuQs1sBuDcspIppKCtklxkpXWVFSoHBUJpVFhVQkqNmiuruRNjcrX3boL_6l3szMr3Yfg4Gp7mgjMuBs2Y3OwpG3yMwVVmE-o1hq1hYHaDGWYOgw3s9Z7FGvHX9h_8AY0gaBY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493212352</pqid></control><display><type>article</type><title>Numerical Study on Transitional Flows Using a Correlation-Based Transition Model</title><source>Alma/SFX Local Collection</source><creator>Halila, Gustavo Luiz Olichevis ; Bigarella, Enda Dimitri Vieira ; Azevedo, João Luiz F</creator><creatorcontrib>Halila, Gustavo Luiz Olichevis ; Bigarella, Enda Dimitri Vieira ; Azevedo, João Luiz F</creatorcontrib><description>A correlation-based transition model is assessed against distinct test cases. The configurations include a zero-pressure-gradient flat plate, a single-element aeronautical airfoil, a multielement high-lift airfoil and a wing–body configuration. These test cases are selected in order to cover different transition mechanisms in increasingly complex scenarios. The simulations are performed considering the compressible preconditioned Reynolds-averaged Navier–Stokes equations, which are one of the options offered by the CFD++ finite volume solver. Turbulence closure is achieved with the shear-stress transport model. This turbulence model is augmented by a transition model based on two additional transport equations: one for the intermittency, and another for the momentum-thickness Reynolds number. Flow parameters, such as freestream turbulence intensity and turbulence length scale, or the eddy viscosity ratio, have important effects on transition onset and extension of the transition region. Mesh refinement and y+ dependence are numerical parameters investigated in this work. The dimensionless wall distance y+ has a significant impact in the computational results. The transition model is also very sensitive to the inflow boundary conditions for the turbulence variables, namely, the freestream turbulence intensity and the eddy viscosity ratio. Good agreement with the experimental data is observed.</description><identifier>ISSN: 0021-8669</identifier><identifier>EISSN: 1533-3868</identifier><identifier>DOI: 10.2514/1.C033311</identifier><language>eng</language><publisher>Virginia: American Institute of Aeronautics and Astronautics</publisher><subject>Aerodynamics ; Body-wing configurations ; Boundary conditions ; Compressibility ; Computational fluid dynamics ; Correlation analysis ; Dimensionless numbers ; Eddy viscosity ; Finite element method ; Flat plates ; Fluid flow ; Grid refinement (mathematics) ; High lift ; Parameters ; Reynolds number ; Transport equations ; Turbulence intensity ; Turbulence models ; Turbulent flow ; Viscosity ; Viscosity ratio ; Vortices</subject><ispartof>Journal of aircraft, 2016-07, Vol.53 (4), p.922-941</ispartof><rights>Copyright © 2015 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper may be made for personal and internal use, on condition that the copier pay the per-copy fee to the Copyright Clearance Center (CCC). All requests for copying and permission to reprint should be submitted to CCC at ; employ the ISSN (print) or (online) to initiate your request.</rights><rights>Copyright © 2015 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper may be made for personal and internal use, on condition that the copier pay the per-copy fee to the Copyright Clearance Center (CCC). All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the ISSN 0021-8669 (print) or 1533-3868 (online) to initiate your request.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a288t-b351cd71efa81c600eebf540408c75236dcefc379070378a7aff3558a827c82e3</citedby><cites>FETCH-LOGICAL-a288t-b351cd71efa81c600eebf540408c75236dcefc379070378a7aff3558a827c82e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Halila, Gustavo Luiz Olichevis</creatorcontrib><creatorcontrib>Bigarella, Enda Dimitri Vieira</creatorcontrib><creatorcontrib>Azevedo, João Luiz F</creatorcontrib><title>Numerical Study on Transitional Flows Using a Correlation-Based Transition Model</title><title>Journal of aircraft</title><description>A correlation-based transition model is assessed against distinct test cases. The configurations include a zero-pressure-gradient flat plate, a single-element aeronautical airfoil, a multielement high-lift airfoil and a wing–body configuration. These test cases are selected in order to cover different transition mechanisms in increasingly complex scenarios. The simulations are performed considering the compressible preconditioned Reynolds-averaged Navier–Stokes equations, which are one of the options offered by the CFD++ finite volume solver. Turbulence closure is achieved with the shear-stress transport model. This turbulence model is augmented by a transition model based on two additional transport equations: one for the intermittency, and another for the momentum-thickness Reynolds number. Flow parameters, such as freestream turbulence intensity and turbulence length scale, or the eddy viscosity ratio, have important effects on transition onset and extension of the transition region. Mesh refinement and y+ dependence are numerical parameters investigated in this work. The dimensionless wall distance y+ has a significant impact in the computational results. The transition model is also very sensitive to the inflow boundary conditions for the turbulence variables, namely, the freestream turbulence intensity and the eddy viscosity ratio. Good agreement with the experimental data is observed.</description><subject>Aerodynamics</subject><subject>Body-wing configurations</subject><subject>Boundary conditions</subject><subject>Compressibility</subject><subject>Computational fluid dynamics</subject><subject>Correlation analysis</subject><subject>Dimensionless numbers</subject><subject>Eddy viscosity</subject><subject>Finite element method</subject><subject>Flat plates</subject><subject>Fluid flow</subject><subject>Grid refinement (mathematics)</subject><subject>High lift</subject><subject>Parameters</subject><subject>Reynolds number</subject><subject>Transport equations</subject><subject>Turbulence intensity</subject><subject>Turbulence models</subject><subject>Turbulent flow</subject><subject>Viscosity</subject><subject>Viscosity ratio</subject><subject>Vortices</subject><issn>0021-8669</issn><issn>1533-3868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNplkF1LwzAUhoMoOKcX_oOAIHjReZI0TXqpxakwP8DtOpylqXR0zUxaZP_ejg0UvHrhvA8Ph5eQSwYTLll6yyYFCCEYOyIjJoVIhM70MRkBcJboLMtPyVmMKwDQoNSIvL_2axdqiw396PpyS31L5wHbWHe1b4frtPHfkS5i3X5SpIUPwTW465J7jK78A9MXX7rmnJxU2ER3ccgxWUwf5sVTMnt7fC7uZglyrbtkKSSzpWKuQs1sBuDcspIppKCtklxkpXWVFSoHBUJpVFhVQkqNmiuruRNjcrX3boL_6l3szMr3Yfg4Gp7mgjMuBs2Y3OwpG3yMwVVmE-o1hq1hYHaDGWYOgw3s9Z7FGvHX9h_8AY0gaBY</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Halila, Gustavo Luiz Olichevis</creator><creator>Bigarella, Enda Dimitri Vieira</creator><creator>Azevedo, João Luiz F</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>U9A</scope></search><sort><creationdate>201607</creationdate><title>Numerical Study on Transitional Flows Using a Correlation-Based Transition Model</title><author>Halila, Gustavo Luiz Olichevis ; Bigarella, Enda Dimitri Vieira ; Azevedo, João Luiz F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a288t-b351cd71efa81c600eebf540408c75236dcefc379070378a7aff3558a827c82e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aerodynamics</topic><topic>Body-wing configurations</topic><topic>Boundary conditions</topic><topic>Compressibility</topic><topic>Computational fluid dynamics</topic><topic>Correlation analysis</topic><topic>Dimensionless numbers</topic><topic>Eddy viscosity</topic><topic>Finite element method</topic><topic>Flat plates</topic><topic>Fluid flow</topic><topic>Grid refinement (mathematics)</topic><topic>High lift</topic><topic>Parameters</topic><topic>Reynolds number</topic><topic>Transport equations</topic><topic>Turbulence intensity</topic><topic>Turbulence models</topic><topic>Turbulent flow</topic><topic>Viscosity</topic><topic>Viscosity ratio</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Halila, Gustavo Luiz Olichevis</creatorcontrib><creatorcontrib>Bigarella, Enda Dimitri Vieira</creatorcontrib><creatorcontrib>Azevedo, João Luiz F</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of aircraft</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Halila, Gustavo Luiz Olichevis</au><au>Bigarella, Enda Dimitri Vieira</au><au>Azevedo, João Luiz F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Study on Transitional Flows Using a Correlation-Based Transition Model</atitle><jtitle>Journal of aircraft</jtitle><date>2016-07</date><risdate>2016</risdate><volume>53</volume><issue>4</issue><spage>922</spage><epage>941</epage><pages>922-941</pages><issn>0021-8669</issn><eissn>1533-3868</eissn><abstract>A correlation-based transition model is assessed against distinct test cases. The configurations include a zero-pressure-gradient flat plate, a single-element aeronautical airfoil, a multielement high-lift airfoil and a wing–body configuration. These test cases are selected in order to cover different transition mechanisms in increasingly complex scenarios. The simulations are performed considering the compressible preconditioned Reynolds-averaged Navier–Stokes equations, which are one of the options offered by the CFD++ finite volume solver. Turbulence closure is achieved with the shear-stress transport model. This turbulence model is augmented by a transition model based on two additional transport equations: one for the intermittency, and another for the momentum-thickness Reynolds number. Flow parameters, such as freestream turbulence intensity and turbulence length scale, or the eddy viscosity ratio, have important effects on transition onset and extension of the transition region. Mesh refinement and y+ dependence are numerical parameters investigated in this work. The dimensionless wall distance y+ has a significant impact in the computational results. The transition model is also very sensitive to the inflow boundary conditions for the turbulence variables, namely, the freestream turbulence intensity and the eddy viscosity ratio. Good agreement with the experimental data is observed.</abstract><cop>Virginia</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.C033311</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8669
ispartof Journal of aircraft, 2016-07, Vol.53 (4), p.922-941
issn 0021-8669
1533-3868
language eng
recordid cdi_proquest_journals_2493212352
source Alma/SFX Local Collection
subjects Aerodynamics
Body-wing configurations
Boundary conditions
Compressibility
Computational fluid dynamics
Correlation analysis
Dimensionless numbers
Eddy viscosity
Finite element method
Flat plates
Fluid flow
Grid refinement (mathematics)
High lift
Parameters
Reynolds number
Transport equations
Turbulence intensity
Turbulence models
Turbulent flow
Viscosity
Viscosity ratio
Vortices
title Numerical Study on Transitional Flows Using a Correlation-Based Transition Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A05%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Study%20on%20Transitional%20Flows%20Using%20a%20Correlation-Based%20Transition%20Model&rft.jtitle=Journal%20of%20aircraft&rft.au=Halila,%20Gustavo%20Luiz%20Olichevis&rft.date=2016-07&rft.volume=53&rft.issue=4&rft.spage=922&rft.epage=941&rft.pages=922-941&rft.issn=0021-8669&rft.eissn=1533-3868&rft_id=info:doi/10.2514/1.C033311&rft_dat=%3Cproquest_cross%3E2493212352%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2493212352&rft_id=info:pmid/&rfr_iscdi=true